3.下列參數(shù)方程化成普通方程(其中t與φ是參數(shù)),并說明各表示什么曲線:
(1)$\left\{\begin{array}{l}{x=3-2t}\\{y=-1-4t}\end{array}\right.$ 
(2)$\left\{\begin{array}{l}{x=4cosφ}\\{y=3sinφ}\end{array}\right.$
(3)$\left\{\begin{array}{l}{x=\frac{a}{2}(t+\frac{1}{t})}\\{y=\frac{2}(t-\frac{1}{t})}\end{array}\right.$
(4)$\left\{\begin{array}{l}{x=5cosφ+2}\\{y=2sinφ-3}\end{array}\right.$.

分析 根據(jù)各式中x,y的關(guān)系消參數(shù)得出普通方程.

解答 解:(1)∵$\left\{\begin{array}{l}{x=3-2t}\\{y=-1-4t}\end{array}\right.$,
∴$\left\{\begin{array}{l}{t=\frac{x-3}{-2}}\\{t=\frac{y+1}{-4}}\end{array}\right.$,
∴$\frac{x-3}{-2}=\frac{y+1}{-4}$,即2x-y=7,表示直線;
(2)∵$\left\{\begin{array}{l}{x=4cosφ}\\{y=3sinφ}\end{array}\right.$,
∴$\left\{\begin{array}{l}{cosφ=\frac{x}{4}}\\{sinφ=\frac{y}{3}}\end{array}\right.$,
∴$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{9}=1$,表示橢圓;
(3)∵$\left\{\begin{array}{l}{x=\frac{a}{2}(t+\frac{1}{t})}\\{y=\frac{2}(t-\frac{1}{t})}\end{array}\right.$,
∴$\left\{\begin{array}{l}{t+\frac{1}{t}=\frac{2x}{a}}\\{t-\frac{1}{t}=\frac{2y}}\end{array}\right.$,
∴$\left\{\begin{array}{l}{{t}^{2}+\frac{1}{{t}^{2}}+2=\frac{4{x}^{2}}{{a}^{2}}}\\{{t}^{2}+\frac{1}{{t}^{2}}-2=\frac{4{y}^{2}}{^{2}}}\end{array}\right.$,
兩式相減得:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}=1$,表示雙曲線;
(4)∵$\left\{\begin{array}{l}{x=5cosφ+2}\\{y=2sinφ-3}\end{array}\right.$,
∴$\left\{\begin{array}{l}{cosφ=\frac{x-2}{5}}\\{sinφ=\frac{y+3}{2}}\end{array}\right.$,
∴$\frac{(x-2)^{2}}{25}+\frac{(y+3)^{2}}{4}=1$,表示橢圓.

點評 本題考查了參數(shù)方程與普通方程的轉(zhuǎn)化,屬于基礎題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

16.若x,y滿足$\left\{\begin{array}{l}{x≥0}\\{y≥0}\\{y≥x+1}\end{array}\right.$,則x-2y的最大值為-2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.在直角坐標系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=-\frac{1}{2}t\\ y=2+\frac{{\sqrt{3}}}{2}t\end{array}\right.$(t為參數(shù)),曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=2+2cosθ}\\{y=2sinθ}\end{array}\right.$(θ為參數(shù)),設M是曲線C上任一點,連結(jié)OM并延長到Q,使|OM|=|MQ|.
(1)求點Q軌跡的直角坐標方程;
(2)若直線l與點Q軌跡相交于A,B兩點,點P的直角坐標為(0,2),求|PA|+|PB|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知參數(shù)方程$\left\{\begin{array}{l}{x=\frac{a(1-{t}^{2})}{1+{t}^{2}}}\\{y=\frac{2\sqrt{3}t}{1+{t}^{2}}}\end{array}\right.$(a∈R,t為參數(shù))表示離心率為$\frac{1}{2}$的橢圓C,直線l經(jīng)過C的右焦點F2,且與C交于M、N兩點.
(1)求a的值;
(2)求$\overrightarrow{{F}_{2}M}$$•\overrightarrow{{F}_{2}N}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知直線l:$\left\{\begin{array}{l}{x=1+cos60°t}\\{y=sin60°t}\end{array}\right.$(t為參數(shù)),曲線C:$\left\{\begin{array}{l}{x=cosθ}\\{y=sinθ}\end{array}\right.$(θ為參數(shù)).
(1)分別將直線l和曲線C的參數(shù)方程轉(zhuǎn)化為普通方程;
(2)求與直線l平行且與曲線C相切的直線l1的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.雙“十一”結(jié)束之后,某網(wǎng)站針對購物情況進行了調(diào)查,參與調(diào)查的人主要集中在[20,50]歲之間,若規(guī)定:購物600(含600元)以下者,稱為“理智購物”,購物超過600元者被網(wǎng)友形象的稱為“剁手黨”,得到如下統(tǒng)計表:
分組編號年齡分組球迷所占比例
1[20,25)10000.5
2[25,30)18000.6
3[30,35)12000.5
4[35,40)a0.4
5[40,45)3000.2
6[45,50]2000.1
若參與調(diào)查的“理智購物”總?cè)藬?shù)為7720人.
(1)求a的值;
(2)從年齡在[20,35)的“剁手黨”中按照年齡區(qū)間分層抽樣的方法抽取20人;
①從這20人中隨機抽取2人,求這2人恰好屬于同一年齡區(qū)間的概率;
②從這20人中隨機抽取2人,用ζ表示年齡在[20,25)之間的人數(shù),求ξ的分布列及期望值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.(理)籃球運動員在比賽中每次罰球命中得1分,罰不中得0分.已知某運動員罰球命中的概率為0.7,則他罰球3次的得分ξ的均值為2.1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.設a,b,c是正實數(shù),且a2+b2+c2+abc=4,證明:a+b+c≤3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.第47屆聯(lián)合國大會于1993年1月18日通過193號決議,確定自1993年起,每年的3月22日為“世界水日”,依次推動對水資源進行進行綜合性統(tǒng)籌規(guī)劃和管理,加強水資源保護,解決日益嚴重的水問題.某研究機構(gòu)為了了解各年齡層的居民對“世界水日”的了解程度,隨機抽取了300名年齡在[10,60]的公民進行調(diào)查,所得結(jié)果統(tǒng)計為如圖的頻率分布直方圖.
(Ⅰ)求抽取的年齡在[30,40)內(nèi)的居民人數(shù);
(Ⅱ)若按照分層抽樣的方法從年齡在[10,20)、[50,60]的居民中抽取6人進行知識普及,并在知識普及后再抽取2人進行測試,求進行測試的居民中至少有1人的年齡在[50,60]內(nèi)的概率.

查看答案和解析>>

同步練習冊答案