16.若x,y滿足$\left\{\begin{array}{l}{x≥0}\\{y≥0}\\{y≥x+1}\end{array}\right.$,則x-2y的最大值為-2.

分析 作出不等式組對應的平面區(qū)域,利用目標函數(shù)的幾何意義,進行求最值即可.

解答 解:畫出可行域(如圖),設z=x-2y⇒y=$\frac{1}{2}$x-$\frac{1}{2}$z,
由圖可知,
當直線l經過點A(0,1)時,z最大,且最大值為zmax=0-2×1=-2.
故答案為:-2.

點評 本題主要考查線性規(guī)劃的基本應用,利用目標函數(shù)的幾何意義是解決問題的關鍵,利用數(shù)形結合是解決問題的基本方法.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

6.已知x,y滿足約束條件$\left\{\begin{array}{l}{x-y-1≥0}\\{3x-y+1≤0}\end{array}\right.$且目標函數(shù)z=ax-by(a>0,b<0)的最大值為-4,則$\frac{b-1}{a+1}$的取值范圍是( 。
A.(-∞,-$\frac{1}{3}$)∪(-5,+∞)B.(-5,-$\frac{1}{3}$)C.(-∞,-3)∪(-$\frac{1}{5}$,+∞)D.(-3,-$\frac{1}{5}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知等比數(shù)列{an}的公比q>1,前n項和為Sn,S3=7,且a1+3,3a2,a3+4成等差數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設cn=(3n-2)an,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知數(shù)列{an}滿足an+1+an=4n+3,且?n∈N*,an+2n2≥0,則a3的取值范圍是( 。
A.[-2,15]B.[-18,7]C.[-18,19]D.[2,19]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.一個口袋中有五張大小,形狀完全相同的卡片,上面分別標有數(shù)字1,2,3,4,5,先從中任意抽出一張作為十位上的數(shù)字(不放回),再從中抽出一張作為個位上的數(shù)字.
(1)試問:一共有多少種不同的結果?請列出所有可能的結果;
(2)求抽到的兩位數(shù)是偶數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.設f(x)、g(x)、h(x)是定義域為R的三個函數(shù),對于命題:①若f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均是增函數(shù),則f(x)、g(x)、h(x)均是增函數(shù);②若f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均是以T為周期的函數(shù),則f(x)、g(x)、h(x)均是以T為周期的函數(shù),下列判斷正確的是(  )
A.①和②均為真命題B.①和②均為假命題
C.①為真命題,②為假命題D.①為假命題,②為真命題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.如圖,過橢圓$Γ:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$內一點A(0,1)的動直線l與橢圓相交于M,N兩點,當l平行于x軸和垂直于x軸時,l被橢圓Γ所截得的線段長均為$2\sqrt{2}$.
(1)求橢圓Γ的方程;
(2)在平面直角坐標系中,是否存在與點A不同的定點B,使得對任意過點A(0,1)的動直線l都滿足$|\overrightarrow{BM}|•|\overrightarrow{AN}|=|\overrightarrow{AM}|•|\overrightarrow{BN}|$?若存在,求出定點B的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知拋物線C:x2=2py(p>0)上的一點M(m,1)到焦點F的距離為2.
(Ⅰ)求拋物線C的方程;
(Ⅱ)直線l過拋物線C的焦點F與拋物線交于A,B兩點,且AA1,BB1都垂直于直線${l_1}:y=-\frac{p}{2}$,垂足為A1,B1,直線l1與y軸的交點為Q,求證:$\frac{{S_{△QAB}^2}}{{{S_{△QA{A_1}}}•{S_{QBB{\;}_1}}}}$為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.下列參數(shù)方程化成普通方程(其中t與φ是參數(shù)),并說明各表示什么曲線:
(1)$\left\{\begin{array}{l}{x=3-2t}\\{y=-1-4t}\end{array}\right.$ 
(2)$\left\{\begin{array}{l}{x=4cosφ}\\{y=3sinφ}\end{array}\right.$
(3)$\left\{\begin{array}{l}{x=\frac{a}{2}(t+\frac{1}{t})}\\{y=\frac{2}(t-\frac{1}{t})}\end{array}\right.$
(4)$\left\{\begin{array}{l}{x=5cosφ+2}\\{y=2sinφ-3}\end{array}\right.$.

查看答案和解析>>

同步練習冊答案