12.雙流中學(xué)食堂旁邊有一塊矩形空地,學(xué)校想要在這塊空地上修建一個(gè)內(nèi)接四邊形EFGH花壇(如圖所示),該花壇的四個(gè)頂點(diǎn)分別落在矩形的四條邊上,已知AB=a(a>10),BC=10,且 AE=AH=CG=CF,設(shè)AE=x,花壇EFGH的面積記為S(x).
(1)求S(x)的解析式,并指出這個(gè)函數(shù)的定義域;
(2)當(dāng)x為何值時(shí),花壇面積S(x)最大?并求出最大面積.

分析 (1)先求得四邊形ABCD,△AHE,△BEF的面積,再分割法求得四邊形EFGH的面積,即建立y關(guān)于x的函數(shù)關(guān)系式;
(2)由(1)知y是關(guān)于x的二次函數(shù),用二次函數(shù)求最值的方法求解.

解答 解:(1)S△AEH=S△CFG=$\frac{1}{2}$x2,S△BEF=S△DGH=$\frac{1}{2}$(a-x)(10-x).(2分)
S(x)=SABCD-2S△AEH-2S△BEF=2a-x2-$\frac{1}{2}$(a-x)(10-x)=-2x2+(a+10)x
由$\left\{\begin{array}{l}{x>0}\\{a-x>0}\\{10-x≥0}\\{a>10}\end{array}\right.$,得0<x≤10
∴S(x)=-2x2+(a+10)x,x∈(0,10]…(6分)
(2)由(1)知f(x)=-2x2+(a+10)x=$-2{({x-\frac{a+10}{4}})^2}+\frac{{{{({a+10})}^2}}}{8}$
因?yàn)閍>10,若$\frac{a+10}{4}$≤10,即10<a≤30,S(x)max=S($\frac{a+10}{4}$)=$(\frac{a+10}{8})^{2}$
$\begin{array}{l}若\frac{a+10}{4}>10,即a>30,有S(x)在上是增函數(shù),此時(shí)\\ S{(x)_{max}}=S({10})=-{({10-\frac{a+10}{4}})^2}+\frac{{{{({a+10})}^2}}}{8}=10a-100…(11分)\end{array}$
綜上所述,10<a≤30時(shí),S(x)max=S($\frac{a+10}{4}$)=$(\frac{a+10}{8})^{2}$;
當(dāng)a>30,x=10時(shí),S(x)max=S(10)=10a-100…(12分)

點(diǎn)評 本題主要考查實(shí)際問題中的建模和解模能力,考查分類討論的數(shù)學(xué)思想,注意二次函數(shù)求最值的方法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知sinα=$\frac{4}{5}$,且α為銳角,則cos$\frac{α}{2}$=$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知sin$\frac{α}{2}$=-$\frac{3}{5}$,cos$\frac{α}{2}$=-$\frac{4}{5}$,則角α是( 。
A.第一象限角B.第二象限角C.第三象限角D.第四象限角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若|x-3|+|x-6y|=0,則log2yx=-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下列函數(shù)中與函數(shù)y=x相等的是(  )
A.y=|x|B.$y=\root{3}{x^3}$C.$y=\sqrt{x^2}$D.$y=\frac{x^2}{x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.函數(shù)y=2sin$\frac{πx}{2}$+1的部分圖象如圖所示,則(${\overrightarrow{OA}$+2$\overrightarrow{OB}}$)•$\overrightarrow{AB}$=( 。
A.-10B.-5C.5D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知橢圓Г:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點(diǎn)與短軸兩端點(diǎn)構(gòu)成一個(gè)面積為2的等腰直角三角形,O為坐標(biāo)原點(diǎn);
(1)求橢圓Г的方程;
(2)設(shè)點(diǎn)A在橢圓Г上,點(diǎn)B在直線y=2上,且OA⊥OB,求證:$\frac{1}{O{A}^{2}}+\frac{1}{O{B}^{2}}$為定值;
(3)設(shè)點(diǎn)C在橢圓Г上運(yùn)動(dòng),OC⊥OD,且點(diǎn)O到直線CD的距離為常數(shù)$\sqrt{3}$,求動(dòng)點(diǎn)D的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知ω>0,函數(shù)f(x)=sinωx+$\sqrt{3}$cosωx在(0,$\frac{π}{2}}$)上單調(diào)遞增,則ω的取值范圍是(  )
A.0<ω≤$\frac{1}{3}$B.$\frac{1}{4}$<ω≤$\frac{1}{3}$C.0<ω≤$\frac{1}{4}$D.$\frac{1}{12}$<ω≤$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.用反證法證明命題:“設(shè)實(shí)數(shù)a,b,c滿足a+b+c=3,則a,b,c中至少有一個(gè)數(shù)不小于1”時(shí),第一步應(yīng)寫:假設(shè)a,b,c都小于2.

查看答案和解析>>

同步練習(xí)冊答案