A. | (0,0) | B. | ($\frac{1}{2}$,1) | C. | (1,$\sqrt{2}$) | D. | (2,2) |
分析 求出焦點坐標和準線方程,把|MF|+|MA|轉化為|MA|+|PM|,利用 當P、A、M三點共線時,|MA|+|PM|取得最小值,把y=2代入拋物線y2=2x 解得x值,即得M的坐標.
解答 解:由題意,F(xiàn)($\frac{1}{2}$,0),準線方程為x=-$\frac{1}{2}$,
設M到準線的距離d=|PM|,則由拋物線的定義得|MA|+|MF|=|MA|+|PM|,
故當P、A、M三點共線時,|MF|+|MA|取得最小值為|AP|=3-(-$\frac{1}{2}$)=$\frac{7}{2}$.
把 y=2代入拋物線y2=2x 得 x=2,故點M的坐標是(2,2),
故選D.
點評 本題考查拋物線的定義和性質應用,解答的關鍵利用是拋物線定義,體現(xiàn)了轉化的數(shù)學思想.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{9}{4}$ | B. | $\frac{9}{16}$ | C. | $\frac{9}{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $[{\frac{1}{7}\;\;,\;\;1}]$ | B. | $[{-1\;\;,\;\;\frac{1}{7}}]$ | ||
C. | $(-∞\;\;,\;\;-\frac{1}{7}]∪[1\;\;,\;\;+∞)$ | D. | [1,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{3}$f($\frac{π}{4}$)<$\sqrt{2}$f($\frac{π}{3}$) | B. | $\sqrt{3}$f($\frac{π}{4}$)>$\sqrt{2}$f($\frac{π}{3}$) | C. | $\sqrt{3}$f($\frac{π}{4}$)<$\sqrt{2}$f($\frac{π}{6}$) | D. | f($\frac{π}{4}$)>$\sqrt{2}$f($\frac{π}{6}$) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 5 | B. | ±5 | C. | 10 | D. | ±10 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 6 | C. | 7 | D. | 6或7 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com