A. | 0 | B. | 1 | C. | 2 | D. | 3 |
分析 利用導數(shù)分析函數(shù)單調性,再根據函數(shù)零點存在性定理易解.
解答 解:函數(shù)定義域為(0,+∞),
函數(shù)f(x)的導數(shù)為$f′(x)=2x-\frac{2}{x}-4=\frac{2{x}^{2}-4x-2}{x}$=$\frac{2({x}^{2}-2x-1)}{x}$,
令f′(x)>0得:x>$1+\sqrt{2}$,
令f′(x)<0得:0<x<$1+\sqrt{2}$,
∴函數(shù)在區(qū)間$(0,1+\sqrt{2})$上遞減,在$(1+\sqrt{2},+∞)$上遞增,
∵f(1)=0,故x=1為函數(shù)一個零點,
又f(2)=4-8+3-2ln2=-1-2ln2<0,f(e2)=e4-4e2-1=e2(e2-4)-1>0,
故函數(shù)在區(qū)間(2,e2)內有一個零點,
綜上可得,函數(shù)有且只有兩個零點.
故選:C.
點評 本題考查函數(shù)零點的存在性定理.利用導數(shù)分析函數(shù)單調性是解題關鍵.考查了分析問題和解決問題的能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | R | B. | (-∞,1) | C. | (1,+∞) | D. | (-∞,1] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0.76<l log0.25<60.7 | B. | 0.76<60.7<l log0.25 | ||
C. | log0.25<60.7<0.76 | D. | log0.25<0.76<60.7 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | c<b<a | B. | c<a<b | C. | a<c<b | D. | a<b<c |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com