5.已知$sin(\frac{π}{4}-θ)$=$\frac{{2\sqrt{2}}}{3}$,則sin2θ=-$\frac{7}{9}$.

分析 由已知利用兩角差的正弦函數(shù)公式可得cosθ-sinθ=$\frac{4}{3}$,兩邊平方,利用二倍角的正弦函數(shù)公式,同角三角函數(shù)基本關(guān)系式即可計算得解.

解答 解:∵$sin(\frac{π}{4}-θ)$=$\frac{{2\sqrt{2}}}{3}$,
∴可得:$\frac{\sqrt{2}}{2}$(cosθ-sinθ)=$\frac{{2\sqrt{2}}}{3}$,解得:cosθ-sinθ=$\frac{4}{3}$,
∴兩邊平方可得:1-sin2θ=$\frac{16}{9}$,解得:sin2θ=-$\frac{7}{9}$.
故答案為:-$\frac{7}{9}$.

點(diǎn)評 本題主要考查了兩角差的正弦函數(shù)公式,二倍角的正弦函數(shù)公式,同角三角函數(shù)基本關(guān)系式在三角函數(shù)化簡求值中的應(yīng)用,考查了計算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)=$\left\{\begin{array}{l}{3x-1,x<1}\\{{2}^{x},x≥1}\end{array}\right.$,則滿足f[f(a)]=2f(a)的a的取值范圍是(  )
A.[$\frac{2}{3}$,1]B.[0,1]C.[$\frac{2}{3}$,+∞)D.[1,+∞]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,矩形ABCD 中,AD⊥平面ABE,AE=FB=BC=2,F(xiàn)為CE上的點(diǎn),且BF⊥平面ACE,AC,BD交于G點(diǎn)
(1)求證:AE∥平面BFD
(2)求證:AE⊥平面BCE
(3)求三棱柱C-BGF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.定義在R上的奇函數(shù)f(x)對任意x∈R都有f(x)=f(x+4),當(dāng)x∈(-2,0)時,f(x)=2x,則f(2016)-f(2015)=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若點(diǎn)$(sin\frac{5π}{6},cos\frac{8π}{3})$在角α的終邊上,則sinα的值為(  )
A.$\frac{{\sqrt{2}}}{2}$B.$-\frac{{\sqrt{2}}}{2}$C.$-\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖所示,四棱錐P-ABCD,底面ABCD是邊長為2的菱形,∠ABC=60°,O為AC,BD的交點(diǎn),且PO⊥平面ABCD,PO=$\sqrt{6}$,點(diǎn)M為側(cè)棱PD上一點(diǎn),且滿足PD⊥平面ACM.
(1)若在棱PD上存在一點(diǎn)N,且BN∥平面AMC,確定點(diǎn)N的位置,并說明理由;
(2)求點(diǎn)B到平面MCD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=kax(k為常數(shù),a>0且a≠1)的圖象過點(diǎn)A(0,1)和點(diǎn)B(2,16).
(1)求函數(shù)的解析式;
(2)g(x)=b+$\frac{1}{f(x)+1}$是奇函數(shù),求常數(shù)b的值;
(3)對任意的x1,x2∈R且x1≠x2,試比較$f(\frac{{{x_1}+{x_2}}}{2})$與$\frac{{f({x_1})+f({x_2})}}{2}$的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.若f(x)=x2+bx+c,且f(1)=0,f(3)=0,
(1)求f(-1)的值;
(2)求f(x)在x∈[2,4]上的最大值與最小值;
(3)判斷f(x)在[2,+∞)上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.下列函數(shù)是偶函數(shù)的是(  )
A.f(x)=x+$\frac{1}{x}$B.f(x)=$\frac{1}{{x}^{2}}$C.f(x)=x3-2xD.f(x)=x2,x∈[-1,1)

查看答案和解析>>

同步練習(xí)冊答案