分析 x=1,$\frac{1}{2}$,$\frac{3}{2}$時(shí),f(x)≠0,因此都不是函數(shù)f(x)的零點(diǎn).由f(x)=acosπx+(1-x)sinπx=0,化為:tanπx=$\frac{a}{x-1}$,(x≠1).分別作出函數(shù)y=tanπx,y=$\frac{a}{x-1}$,(x≠1)的圖象,則此兩函數(shù)的圖象都關(guān)于(1,0)成中心對(duì)稱,即可得出.
解答 解:x=1時(shí),f(1)=acosπ=-a<0,因此1不是函數(shù)f(x)的零點(diǎn).同理x=$\frac{1}{2}$,$\frac{3}{2}$,也不是函數(shù)f(x)的零點(diǎn).
由f(x)=acosπx+(1-x)sinπx=0,化為:tanπx=$\frac{a}{x-1}$,(x≠1,$\frac{1}{2}$,$\frac{3}{2}$).
作出函數(shù)y=tanπx,y=$\frac{a}{x-1}$,(x≠1)的圖象,
則此兩函數(shù)的圖象都關(guān)于(1,0)成中心對(duì)稱,
由函數(shù)的單調(diào)性與對(duì)稱性可得:x∈[0,2],兩函數(shù)y=tanπx,y=$\frac{a}{x-1}$,(x≠1)的圖象有且僅有兩個(gè)交點(diǎn),并且關(guān)于(1,0)成中心對(duì)稱,不妨設(shè)交點(diǎn)的橫坐標(biāo)分別為x1,x2,
∴x1+x2=2.
故答案為:2.
點(diǎn)評(píng) 本題考查了通過函數(shù)的圖象的交點(diǎn)得出函數(shù)的零點(diǎn),考查了數(shù)形結(jié)合、推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 關(guān)于直線x=$\frac{π}{4}$對(duì)稱 | B. | 關(guān)于點(diǎn)($\frac{3π}{16}$,0)對(duì)稱 | ||
C. | 關(guān)于直線x=$\frac{3π}{16}$對(duì)稱 | D. | 關(guān)于點(diǎn)($\frac{π}{16}$,0)對(duì)稱 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com