11.在平面直角坐標(biāo)系xOy中,△ABC的頂點(diǎn)坐標(biāo)分別為A(2,3),B(1,-3),C(-3,-1)
(I)求BC邊的中線所在直線的方程;
(II)求BC邊的高線所在直線的方程.

分析 (Ⅰ)求出BC的中點(diǎn)坐標(biāo)以及BC邊中線所在的直線方程斜率,從而求出直線方程即可;
(Ⅱ)先求出BC的斜率,再求出BC邊的高線所在直線方程斜率,根據(jù)點(diǎn)斜式求出直線方程即可.

解答 解:(I) 由中點(diǎn)坐標(biāo)公式可知:
BC邊中點(diǎn)D的坐標(biāo)為$({\frac{1-3}{2},\frac{-3-1}{2}})$即(-1,-2),
于是BC邊中線所在的直線方程斜率為${k_{AD}}=\frac{{3-({-2})}}{{2-({-1})}}=\frac{5}{3}$,
由點(diǎn)斜式可得:BC邊的中線所在直線的方程為$y+2=\frac{5}{3}({x+1})$,
即5x-3y-1=0;
(II)易知,BC邊所在直線方程斜率為${k_{BC}}=\frac{{-1-({-3})}}{-3-1}=-\frac{1}{2}$,
又BC邊的高線所在直線方程斜率滿足:kAE•kBC=-1得:kAE=2,
于是由點(diǎn)斜式知:BC邊的高線所在直線的方程為y-3=2(x-2),
即2x-y-1=0.

點(diǎn)評(píng) 本題考查了直線方程問(wèn)題,考查直線的垂直的關(guān)系,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知關(guān)于x的方程x2+zx+1+2i=0有實(shí)根,則復(fù)數(shù)z的模的最小值為$\sqrt{2\sqrt{5}+2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知向量$\overrightarrow{a}$=(sinωx,cosωx),$\overrightarrow$=(2sinωx,2$\sqrt{3}$sinωx).函數(shù)f(x)=$\overrightarrow{a}$$•\overrightarrow$+λ(x∈R)的圖象關(guān)天直線x=$\frac{π}{3}$對(duì)稱.且經(jīng)過(guò)點(diǎn)($\frac{π}{4}$,$\sqrt{3}$),其中ω,λ為實(shí)數(shù).ω∈(0,2).
(1)求f(x)的解析式:
(2)若銳角α,β滿足f($\frac{α}{2}$+$\frac{π}{3}$)=$\frac{2}{7}$,f($\frac{α+β}{2}$+$\frac{π}{12}$)=$\frac{5\sqrt{3}}{7}$.求β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.函數(shù)y=$\sqrt{4-{x}^{2}}$的定義域是( 。
A.(-2,2)B.[-2,2]C.(-∞,-2)D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知$\overrightarrow{AB}$=(3,4),那么$|{\overrightarrow{AB}}|$等于( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知直線l與直線4x-3y+5=0垂直,并且與兩坐標(biāo)軸圍成的三角形的面積為24,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=2cos[ω(x+φ)](ω>0,0<φ<π).
(1)若函數(shù)f(x)圖象過(guò)點(diǎn)(0,-2)且圖象上兩個(gè)對(duì)稱中心A(x1,0)與B(x2,0)間最短距離為$\frac{π}{2}$,求函數(shù)f(x)解析式;
(2)若$φ=\frac{π}{2}$,函數(shù)f(x)在[-$\frac{π}{3},\frac{2π}{3}$]上單調(diào)遞減,求ω的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知△ABC三個(gè)頂點(diǎn)坐標(biāo)分別為A(0,0),B(4,0),C(0,3),點(diǎn)P是△ABC內(nèi)切圓上一點(diǎn).
(1)求△ABC內(nèi)切圓的方程;
(2)求以PA、PB、PC為直徑的三個(gè)圓的面積之和的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.(1)若直線l1與l2互相垂直,且方程分別為l1:2x+y+2=0,l2:ax+4y-2=0,求它們交點(diǎn)坐標(biāo);
(2)求經(jīng)過(guò)點(diǎn)(-2,-3),在x軸、y軸上截距相等的直線方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案