13.函數(shù)y=$\sqrt{4-{x}^{2}}$的定義域是( 。
A.(-2,2)B.[-2,2]C.(-∞,-2)D.(2,+∞)

分析 直接由根式內(nèi)部的代數(shù)式大于等于0求得x的取值范圍得答案.

解答 解:由4-x2≥0,解得-2≤x≤2.
∴函數(shù)y=$\sqrt{4-{x}^{2}}$的定義域是[-2,2].
故選:B.

點(diǎn)評(píng) 本題考查函數(shù)的定義域及其求法,考查一元二次不等式的解法,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在平行六面體ABCD-A′B′C′D′中,AB=4,AD=6,AA′=8,∠BAD=90°,∠BAA′=∠DAA′=60°,P是CC1的中點(diǎn).
(Ⅰ)用$\overrightarrow{AB},\overrightarrow{AD},\overrightarrow{AA'}$表示$\overrightarrow{AP}$;
(Ⅱ)求AP的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在平行四邊形ABCD中,AB=2,BC=1,∠ABC=120°,平面ABCD內(nèi)有一點(diǎn)P,滿足AP=$\sqrt{5}$,若$\overrightarrow{AP}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AD}$(λ,μ∈R),則2λ+μ的最大值為( 。
A.$\frac{\sqrt{5}}{3}$B.$\frac{2\sqrt{15}}{3}$C.$\frac{3\sqrt{5}}{4}$D.$\frac{\sqrt{15}}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若隨機(jī)事件A在一次試驗(yàn)中發(fā)生的概率為p(0<p<1),用隨機(jī)變量ξ表示A在一次試驗(yàn)發(fā)生的次數(shù),則$\frac{4Dξ-1}{Eξ}$的最大值為( 。
A.2B.-1C.0D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.一個(gè)數(shù)列的前4項(xiàng)依次為:-1×2,2×3,-3×4,4×5,請(qǐng)寫出該數(shù)列的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且a,b,c依次成等差數(shù)列.
(Ⅰ)若B=$\frac{π}{6}$,b=1+$\sqrt{3}$,求△ABC的面積;
(Ⅱ)記M=(sinA+sinC)cosB+2$\sqrt{3}{sin^2}$B,求M的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在平面直角坐標(biāo)系xOy中,△ABC的頂點(diǎn)坐標(biāo)分別為A(2,3),B(1,-3),C(-3,-1)
(I)求BC邊的中線所在直線的方程;
(II)求BC邊的高線所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知條件p:k≤x≤k+7,條件q:0≤x2-2x<8,p是q的必要不充分條件,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列命題中,正確的是( 。
A.若z是復(fù)數(shù),則|z|2=z2
B.任意兩個(gè)復(fù)數(shù)不能比較大小
C.當(dāng)b2-4ac>0時(shí),一元二次方程ax2+bx+c=0(a、b、c∈C)有兩個(gè)不相等的實(shí)數(shù)根
D.在復(fù)平面xOy上,復(fù)數(shù)z=m2+mi(m∈R,i是虛數(shù)單位)對(duì)應(yīng)的點(diǎn)的軌跡方程是y2=x

查看答案和解析>>

同步練習(xí)冊(cè)答案