18.當(dāng)x∈(0,+∞),冪函數(shù)y=(m2-m-1)xm為減函數(shù),則實(shí)數(shù)m的值為( 。
A.0B.1C.2D.-1

分析 根據(jù)冪函數(shù)的定義與性質(zhì),列出方程組求出解即可.

解答 解:x∈(0,+∞)時(shí),冪函數(shù)y=(m2-m-1)xm為減函數(shù),
∴$\left\{\begin{array}{l}{{m}^{2}-m-1=1}\\{m<0}\end{array}\right.$,
解得m=-1.
故選:D.

點(diǎn)評(píng) 本題考查了冪函數(shù)的定義與性質(zhì)的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)x1,x2是方程2x2-6x+3=0的兩個(gè)根,不解方程,求下列各式的值
(1)(x1-3)(x2-3);
(2)$\frac{1}{{x}_{1}^{2}}$+$\frac{1}{{x}_{2}^{2}}$;
(3)x${\;}_{1}^{3}$+x${\;}_{2}^{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知數(shù)列{an}中,a1=1,an+1=$\frac{\sqrt{2}{a}_{n}}{\sqrt{{{a}_{n}}^{2}+2}}$(n∈N*
(1)證明{$\frac{1}{{{a}_{n}}^{2}}$}是等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=$\frac{1}{{{a}_{n}}^{2}}$,數(shù)列{bn}的前n項(xiàng)和為Sn,已知存在正整數(shù)m,使得$\frac{1}{{S}_{1}}$+$\frac{1}{{S}_{2}}$+…+$\frac{1}{{S}_{n}}$<m對(duì)n∈N+恒成立,求m的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知$f(x)=x+\frac{1}{x}$
(1)求函數(shù)在$x=\frac{1}{2}$處的切線方程.
(2)求函數(shù)在x=x0處的切線與直線y=x和y軸圍成的三角形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)$f(x)=\left\{\begin{array}{l}{x^2}+4x,x≤0\\ xlnx,x>0\end{array}\right.$,g(x)=kx-1,若方程f(x)-g(x)=0在x∈(-2,2)有三個(gè)實(shí)根,則實(shí)數(shù)k的取值范圍為( 。
A.$(1,ln2\sqrt{e})$B.$(ln2\sqrt{e},\frac{3}{2})$C.$(\frac{3}{2},2)$D.$(1,ln2\sqrt{e})∪(\frac{3}{2},2)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-2+\frac{\sqrt{6}}{3}t}\\{y=\frac{\sqrt{3}}{3}t}\end{array}\right.$(t為參數(shù)),在直角坐標(biāo)系中,以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的方程為ρ=2$\sqrt{2}$cos(θ-$\frac{π}{4}$)-2sinθ.
(1)求曲線C的直角坐標(biāo)方程;
(2)點(diǎn)P、Q分別為直線l與曲線C上的動(dòng)點(diǎn),求|PQ|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知二項(xiàng)式${(ax+\frac{1}{x})^4}$的展開式中x2項(xiàng)的系數(shù)為32,則實(shí)數(shù)a=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=x3-3x及y=f(x)上一點(diǎn)P(1,-2)
(1)求曲線在點(diǎn)P處的切線方程;
(2)求曲線過點(diǎn)P處的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.求下列函數(shù)的導(dǎo)數(shù).
(1)y=x2sinx;
(2)$y=\frac{lnx}{x}$;
(3)y=ln(2x-5).

查看答案和解析>>

同步練習(xí)冊(cè)答案