16.求下列函數(shù)的定義域
(1)f(x)=$\frac{\sqrt{x+1}}{x}$;
(2)$f(x)=\frac{1+{x}^{2}}{1-{x}^{2}}$
(3)f(x)=$\sqrt{x+3}$+$\frac{1}{x+2}$.

分析 由根式內(nèi)部的代數(shù)式大于等于0,分式的分母不為0,列出三個函數(shù)所對應的不等式組得答案.

解答 解:(1)由$\left\{\begin{array}{l}{x+1≥0}\\{x≠0}\end{array}\right.$,解得x≥-1且x≠0,
∴f(x)=$\frac{\sqrt{x+1}}{x}$的定義域為[-1,0)∪(0,+∞);
(2)由1-x2≠0,得x≠±1.
∴$f(x)=\frac{1+{x}^{2}}{1-{x}^{2}}$的定義域為(-∞,-1)∪(-1,1)∪(1,+∞);
(3)由$\left\{\begin{array}{l}{x+3≥0}\\{x+2≠0}\end{array}\right.$,解得x≥-3且x≠-2.
∴f(x)=$\sqrt{x+3}$+$\frac{1}{x+2}$的定義域為[-3,-2)∪(-2,+∞).

點評 本題考查函數(shù)的定義域及其求法,是基礎的計算題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

6.函數(shù)f(x)=$\frac{{\sqrt{x-1}}}{x-3}$+(x-1)0的定義域為( 。
A.[1,+∞)B.(1,+∞)C.[1,3)∪(3,+∞)D.(1,3)∪(3,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.若直線l1:ax+2y-1=0與l2:3x-ay+1=0垂直,則a=( 。
A.-1B.1C.0D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.下列有關函數(shù)單調(diào)性的說法,不正確的是( 。
A.若f(x)為增函數(shù),g(x)為增函數(shù),則f(x)+g(x)為增函數(shù)
B.若f(x)為減函數(shù),g(x)為減函數(shù),則f(x)+g(x)為減函數(shù)
C.若f(x)為增函數(shù),g(x)為減函數(shù),則f(x)+g(x)為增函數(shù)
D.若f(x)為減函數(shù),g(x)為增函數(shù),則f(x)-g(x)為減函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.如圖是正方體的平面展開圖,則在這個正方體中,以下四個判斷中,正確的序號是②④.
①BM與ED平行;②CN與BE是異面直線;③CN與BM成60°角;④DM與BN是異面直線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知f(x)=$\frac{x+a}{{x}^{2}+bx+1}$是定義在[-1,1]上的奇函數(shù).
(1)求f(x)的解析式;
(2)判斷并證明f(x)的單調(diào)性;
(3)解不等式:f(x)-f(1-x)<0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.在銳角三角形ABC,角A,B,C的對邊分別為a,b,c,且滿足(b2-a2-c2)sinAcosA=accos(A+C).
(1)求角A;
(2)若a=$\sqrt{2}$,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.sin(-$\frac{5}{6}$π)的值是( 。
A.$\frac{\sqrt{3}}{2}$B.$\frac{1}{2}$C.-$\frac{\sqrt{3}}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知函數(shù)f(x)的定義域為[0,2],則函數(shù)$\frac{f(2x)}{x}$的定義域是( 。
A.(0,4]B.[0,4]C.[0,1]D.(0,1]

查看答案和解析>>

同步練習冊答案