6.已知函數(shù)f(x)的定義域為[0,2],則函數(shù)$\frac{f(2x)}{x}$的定義域是(  )
A.(0,4]B.[0,4]C.[0,1]D.(0,1]

分析 根據(jù)函數(shù)f(x)的定義域為[0,2],令0≤2x≤2,求出x的范圍即得到f(2x)的定義域,從而求出函數(shù)$\frac{f(2x)}{x}$的定義域即可.

解答 解:因為函數(shù)f(x)的定義域為[0,2],
所以0≤2x≤2,所以0≤x≤1,
所以f(2x)的定義域為[0,1],
則函數(shù)$\frac{f(2x)}{x}$的定義域是(0,1],
故選:D.

點評 已知f(x)的定義域為[c,d],求f(ax+b)的定義域,只需解不等式c≤ax+b≤d即可,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

16.求下列函數(shù)的定義域
(1)f(x)=$\frac{\sqrt{x+1}}{x}$;
(2)$f(x)=\frac{1+{x}^{2}}{1-{x}^{2}}$
(3)f(x)=$\sqrt{x+3}$+$\frac{1}{x+2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.圓x2+y2-2x-2y+1=0上的點到直線x-y=2的距離最大值是( 。
A.2+$\sqrt{2}$B.1+$\sqrt{2}$C.$\sqrt{2}$-1D.1+2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知A={(x,y)|x+y=3},B={(x,y)|x-y=1},則A∩B=(  )
A.{2,1}B.{x=2,y=1}C.{(2,1)}D.(2,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},則滿足條件A⊆C⊆B的集合C 的個數(shù)為4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知集合A={x||2x-1|≤3},集合B={x|x2+(4-a)x-4a>0},若A∩B=A,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知三棱錐S-ABC的所有頂點都在球O的球面上,△ABC是邊長為1的正三角形,SC為球O的直徑,且SC=2;則棱錐VO-ABC:VO-SAB=(  )
A.1:1B.1:2C.2:1D.1:3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知實數(shù)x,y滿足約束條件$\left\{\begin{array}{l}y≥0\\ x-y≥0\\ 2x-y-2≥0\end{array}\right.$,則使|m-1|>$\frac{y-1}{x+1}$恒成立的m的取值范圍是( 。
A.[0,2]B.(-∞,0]∪[2,+∞)C.[2,+∞)D.[-$\frac{1}{2}$,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.在△ABC中,角A、B、C所對應的邊分別為a、b、c,則“A≤B”是sinA≤sinB的( 。
A.充分必要條件B.充分不必要條件
C.必要不充分條件D.不充分不必要條件

查看答案和解析>>

同步練習冊答案