7.已知數(shù)列{an}的前n項(xiàng)和Sn=k+3n,若{an}是等比數(shù)列,則k的值是( 。
A.-1B.0
C.1D.以上答案都有不對(duì)

分析 由數(shù)列{an}的前n項(xiàng)和Sn=k+3n,求出數(shù)列的前3項(xiàng),再由{an}是等比數(shù)列,能求出k.

解答 解:∵數(shù)列{an}的前n項(xiàng)和Sn=k+3n,
∴a1=S1=k+3,
a2=S2-S1=k+9-(k+3)=6,
a3=S3-S2=(k+27)-(k+9)=18,
∵{an}是等比數(shù)列,
∴62=(k+3)×18,
解得k=-1.
故選:A.

點(diǎn)評(píng) 本題考查實(shí)數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等比數(shù)列的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.(1)若f(x+1)=2x2+1,求f(x)的表達(dá)式;
(2)若函數(shù)f(x)=$\frac{x}{ax+b}$,f(2)=1,又方程f(x)=x有唯一解,求f(x)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)=$\frac{a{x}^{2}+1}{x}$,且f(1)=-1.
(1)求f(x)的解析式,并判斷它的奇偶性;
(2)判斷函數(shù)f(x)在(0,+∞)上的單調(diào)性并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.“m=3”是“橢圓$\frac{x^2}{m}+\frac{y^2}{4}=1$的焦距為2”的充分不必要條件.(填“充分不必要條件、必要不充分條件、充分必要條件、既不充分也不必要條件”)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.在△ABC中,三個(gè)內(nèi)角A,B,C的對(duì)邊分別是a,b,c,若b2+c2-a2=bc,則角A等于(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知函數(shù)f(x)=asinx-$\frac{3}{2}$(a∈R),若函數(shù)f(x)在(0,π)的零點(diǎn)個(gè)數(shù)為2個(gè),則當(dāng)x∈[0,$\frac{π}{2}$],f(x)的最大值為a-$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知數(shù)列{an}滿(mǎn)足a1=3,${a_{n+1}}=\frac{{5{a_n}-13}}{{3{a_n}-7}}$,則a2016=( 。
A.3B.2C.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.集合A={x|x≤3},B={x|x>1},R為實(shí)數(shù)集.
(1)求A∩B;       
(2)求A∪(∁RB)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.一條光線經(jīng)過(guò)點(diǎn)P(2,3)射在直線x+y+1=0上,反射后,經(jīng)過(guò)點(diǎn)A(1,1),則光線的入射線和反射線所在的直線方程為2x-y-1=0;4x-5y+1=0.

查看答案和解析>>

同步練習(xí)冊(cè)答案