20.已知a,b∈R,比較a2b2+5與2ab-a2-4a的大小.

分析 利用作差法求解即可.

解答 解:用作差法比較
a2b2+5-(2ab-a2-4a)=a2b2+5-2ab+a2+4a
配方得到(ab-1)2+(a+2)2
兩個(gè)平方之和,一定≥0
當(dāng)a=-2,b=-$\frac{1}{2}$時(shí)取等號(hào).
所以a2b2+5≥2ab-a2-4a.

點(diǎn)評(píng) 本題考查了利用作差法比較大。畬儆诨A(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.函數(shù)y=log3x+$\frac{1}{{{{log}_3}x}}$-1的值域是( 。
A.(-∞,-3)∪(1,+∞)B.(-∞,-3]∪[1,+∞)C.[1,+∞)D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知中心在原點(diǎn)的橢圓與雙曲線有公共焦點(diǎn),左右焦點(diǎn)分別為F1,F(xiàn)2,且兩條曲線在第一象限的交點(diǎn)為P,△PF1F2是以PF1為底邊的等腰三角形,若|PF1|=10,橢圓與雙曲線的離心率分別為e1,e2,則e1e2+1的取值范圍是($\frac{4}{3}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知命題p:x1和x2是方程x2-mx-2=0的兩個(gè)實(shí)根,不等式a2-5a-3≥|x1-x2|對(duì)任意實(shí)數(shù)m∈[-1,1]恒成立;命題q:不等式ax2+2x-1>0有解.若p∧q是假命題,¬p也是假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.函數(shù)y=f(x)(x∈[a,b])的圖象與直線x=2015的交點(diǎn)個(gè)數(shù)是(  )
A.至多有一個(gè)B.至少有一個(gè)C.有且僅有一個(gè)D.有無(wú)數(shù)個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.設(shè)函數(shù)f(x)=(2x-1)ex-ax+a,若存在唯一的整數(shù)x0使得f(x0)<0,則實(shí)數(shù)a的取值范圍是[$\frac{3}{2e}$,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.觀察程序框圖如圖所示.若a=5,則輸出b=26.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知函數(shù)f(x)=x2-x-2.求:
(1)f(x)的值域;
(2)f(x)的零點(diǎn);
(3)f(x)<0時(shí)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.某中學(xué)有三個(gè)年級(jí),各年級(jí)男、女生人數(shù)如表:
高一年級(jí)高二年級(jí)高三年級(jí)
男生380300370
女生370200z
已知在全校學(xué)生中隨機(jī)抽取1名學(xué)生,抽到高二年級(jí)男生的概率為0.15.
(1)求z的值;  
(2)用分層抽樣的方法在高二年級(jí)中抽取一個(gè)容量為5的樣本,將該樣本看成一個(gè)總體,從中任取2名學(xué)生,求這2名學(xué)生均為男生的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案