9.對于復(fù)數(shù)a,b,c,d,若集合S={a,b,c,d}具有性質(zhì)“對任意x,y∈S,必有xy∈S”,則當(dāng)$\left\{\begin{array}{l}{a=1}\\{^{2}=1}\\{{c}^{2}=b}\end{array}\right.$時(shí),b+c+d等于-1.

分析 推導(dǎo)出a=1,b=-1,c2=-1,c=i,d=-i,或c=-i,d=i,由此能求出b+c+d的值.

解答 解:∵對于復(fù)數(shù)a,b,c,d,若集合S={a,b,c,d}具有性質(zhì)“對任意x,y∈S,必有xy∈S”,
$\left\{\begin{array}{l}{a=1}\\{^{2}=1}\\{{c}^{2}=b}\end{array}\right.$,
∴可取a=1,b=-1,c2=-1,c=i,d=-i,或c=-i,d=i,
∴b+c+d=-1+i-i=-1.
故答案為:-1.

點(diǎn)評 本題考查三個(gè)數(shù)的和的求法,考查集合、復(fù)數(shù)等基礎(chǔ)知識,考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.計(jì)算下列式子的值:
(1)$\frac{2lg2+lg3}{1+\frac{1}{2}lg0.36+\frac{1}{3}lg8}$;
(2)sin$\frac{25π}{6}$+cos$\frac{25π}{3}$+tan(-$\frac{25π}{4}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.?dāng)?shù)列{an}的前n項(xiàng)和為Sn,且Sn=n(n+1),n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足:${a_n}=\frac{b_1}{3+1}+\frac{b_2}{{{3^2}+1}}+…+\frac{b_n}{{{3^n}+1}}$,求數(shù)列{bn}的通項(xiàng)公式;
(3)令${c_n}=\frac{{{a_n}{b_n}}}{4},n∈{N^*}$,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.如果三點(diǎn)A(1,5,-2),B(2,4,1),C(a,3,b+2)在同一直線上,則( 。
A.a=3,b=-3B.a=6,b=-1C.a=3,b=2D.a=-2,b=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.某高校在2015年的自主招生考試成績中隨機(jī)抽取100名學(xué)生的筆試成績,按成績分組,得到的頻率分布表如表所示.
組號分組頻數(shù)頻率
第1組[160,165)50.050
第2組[165,170)a0.350
第3組[170,175)30b
第4組[175,180)200.200
第5組[180,185]100.100
合計(jì)1001.00
(Ⅰ)求出頻率分布表中a,b的值,再在答題紙上完成頻率分布直方圖;
(Ⅱ)根據(jù)樣本頻率分布直方圖估計(jì)樣本成績的中位數(shù);
(Ⅲ)高校決定在筆試成績較高的第3,4,5組中用分層抽樣抽取6名學(xué)生進(jìn)入第二輪面試,再從6名學(xué)生中隨機(jī)抽取2名學(xué)生由A考官進(jìn)行面試,求第4組至少有一名學(xué)生被考官A面試的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.定義:對于集合A={a1,a2,a3,…an},“a1•a2•a3…an”稱為集合A的“元素積”;“a1+a2+a3+…+an”稱為集合A的“元素和”.特別地,A={a1}的元素積為a1;A={a1}的元素和為a1.若A={1,-1,3,4},記集合A的所有非空子集的元素積的和為M,集合A的所有非空子集的元素和的和為N.則M+N=55.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知函數(shù)f(x)=xlnx-x,則曲線y=f(x)在點(diǎn)(e,f(e))處的切線方程為x-y-e=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.cos70°sin40°-sin70°sin130°等于 ( 。
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列命題中,真命題的個(gè)數(shù)為( 。
①從容量為20的總體中的用簡單隨機(jī)抽樣逐個(gè)抽取容量為5的樣本,則個(gè)體甲第一次被抽到或第二次被抽到的概率均為$\frac{1}{4}$;
②線性相關(guān)系數(shù)r是刻畫變量之間線性相關(guān)程度的量,r越大則兩變量間的線性相關(guān)程度越強(qiáng);
③離散型隨機(jī)變量X,Y滿足Y=-2X+1,方差DX=$\frac{1}{2}$,則方差DY=-1.
A.0B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊答案