16.函數(shù)r=f(P)的圖象如圖所示
(Ⅰ)函數(shù)r=f(P)的定義域和值域分別是什么?
(Ⅱ)r取何值時(shí),只有唯一的P值與之對(duì)應(yīng)?

分析 本題是由函數(shù)的圖象語言告訴題設(shè),直接觀察圖象得出相關(guān)的數(shù)據(jù)即可.

解答 解:(Ⅰ)由圖象知,函數(shù)y=f(x)的圖象包括兩部分,一部分是以[-5,0]為定義域且以(2,5)為值域的一段增函數(shù),一部分是以[2,6)為定義域且以[0,+∞)為值域的增函數(shù),
故其定義域是[-5,0]∪[2,6),值域?yàn)閇0,+∞),
(Ⅱ)故r只有唯一的p與之對(duì)應(yīng)則r的范圍是[0,2]∪[5,+∞).

點(diǎn)評(píng) 本題主要考查函數(shù)定義域和值域的求法,理解函數(shù)圖象是解決本題的關(guān)鍵,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某學(xué)校制定學(xué)校發(fā)展規(guī)劃時(shí),對(duì)現(xiàn)有教師進(jìn)行年齡狀況和接受教育程度(學(xué)歷)的調(diào)查,其結(jié)果(人數(shù)分布)如表:
學(xué)歷35歲以下35至50歲50歲以上
本科803020
研究生x20y
(Ⅰ)用分層抽樣的方法在35至50歲年齡段的教師中抽取一個(gè)容量為5的樣本,將該樣本看成一個(gè)總體,從中任取2人,求至少有l(wèi)人的學(xué)歷為研究生的概率;
(Ⅱ)在該校教師中按年齡狀況用分層抽樣的方法抽取N個(gè)人,其中35歲以下48人,50歲以上10人,再從這N個(gè)人中隨機(jī)抽取l人,此人的年齡為50歲以上的概率為$\frac{5}{39}$,求x、y的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知在數(shù)列{an}中,a1=2,an=2-$\frac{1}{{a}_{n-1}}$(n≥2,n∈N*),設(shè)Sn是數(shù)列{bn}的前n項(xiàng)和,bn=lgan,則S99的值是( 。
A.2B.3C.5D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.角α的終邊經(jīng)過兩點(diǎn)P(3a,4a),Q(a+1,2a)(a≠0),則角α的正弦值等于( 。
A.$-\frac{4}{5}$B.$\frac{3}{5}$C.$\frac{4}{5}$D.$±\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若xlog34=1,則4x+4-x的值為( 。
A.3B.4C.$\frac{17}{4}$D.$\frac{10}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在△ABC中,a,b,c分別是三內(nèi)角A,B,C的對(duì)邊,且sin2B-sin2C=sinA(sinA-sinC),則角B等于(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{5π}{6}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.為了檢查某超市貨架上的飲料是否含有塑化劑,要從編號(hào)依次為1到50的塑料瓶裝飲料中抽取5瓶進(jìn)行檢驗(yàn),用每部分選取的號(hào)碼間隔一樣的系統(tǒng)抽樣方法確定所選取的5瓶飲料的編號(hào)可能是( 。
A.5,10,15,20,25B.2,4,6,8,10C.1,2,3,4,5D.7,17,27,37,47

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{e}^{x},x<0}\\{lnx,x>0}\end{array}\right.$,則f[f($\frac{1}{e}$)]=(  )
A.-$\frac{1}{e}$B.-eC.eD.$\frac{1}{e}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.定義:分子為1且分母為正整數(shù)的分?jǐn)?shù)稱為單位分?jǐn)?shù).我們可以把1分拆為若干個(gè)不同的單位分?jǐn)?shù)之和.如:$1=\frac{1}{2}+\frac{1}{3}+\frac{1}{6}$,$1=\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\frac{1}{12}$,$1=\frac{1}{2}+\frac{1}{5}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}$,
依此類推可得:$1=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{m}+\frac{1}{n}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}$,
其中m≤n,m,n∈N*.則m+n的值為( 。
A.24B.23C.32D.28

查看答案和解析>>

同步練習(xí)冊(cè)答案