12.雙曲線x2-2y2=16的實(shí)軸長(zhǎng)等于8.

分析 雙曲線x2-2y2=16,化為標(biāo)準(zhǔn)方程為$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{8}$=1,即可求得實(shí)軸長(zhǎng).

解答 解:雙曲線x2-2y2=16,化為標(biāo)準(zhǔn)方程為$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{8}$=1,
∴a2=16,
∴a=4,
∴2a=8,
即雙曲線x2-2y2=16的實(shí)軸長(zhǎng)是8.
故答案為:8.

點(diǎn)評(píng) 本題重點(diǎn)考查雙曲線的幾何性質(zhì),解題的關(guān)鍵是將雙曲線方程化為標(biāo)準(zhǔn)方程,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.化簡(jiǎn):2$\sqrt{1+sin6}$+$\sqrt{2-2cos6}$=-2cos3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知集合A={1,2,3,4,5},集合B={-2,2,3,4,5,9},則集合A∩B=( 。
A.{2,3,4}B.{2,3,4,5}C.{1,2,3,4,5}D.{-2,1,2,3,4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知集合A={0,1},B={x|x2-ax=0},且A∪B=A,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{y≥x}\\{x+y≤4}\\{2x+y-3≥0}\end{array}\right.$,則Z=y-($\frac{1}{2}$)x的取值范圍為[$\frac{1}{2}$,$-lo{g}_{2}ln2-\frac{1}{ln2}+4$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=|$\overrightarrow$|=1,$\overrightarrow{a}$•$\overrightarrow$=$\frac{1}{2}$,則|$\overrightarrow{a}$+$\overrightarrow$|等于( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{5}$D.$\sqrt{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)f(x)=ln($\frac{1}{x}$-x)的圖象大致為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知實(shí)數(shù)x,y滿足x>y>0且x+y=1,則$\frac{2}{x+3y}+\frac{1}{x-y}$的最小值是$\frac{{3+2\sqrt{2}}}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案