A. | 1-$\sqrt{2}$ | B. | 1+$\sqrt{2}$ | C. | 3+2$\sqrt{2}$ | D. | 1 |
分析 設等比數列{an}的公比為q>0,由a1,$\frac{1}{2}$a3,2a2成等差數列,可得$2×\frac{1}{2}{a}_{3}$=a1+2a2,化為q2-2q-1=0,解得q.則$\frac{{a}_{11}+{a}_{16}}{{a}_{10}+{a}_{15}}$=q.
解答 解:設等比數列{an}的公比為q>0,∵a1,$\frac{1}{2}$a3,2a2成等差數列,
∴$2×\frac{1}{2}{a}_{3}$=a1+2a2,
∴${a}_{1}{q}^{2}$=a1(1+2q),
化為q2-2q-1=0,
解得q=1+$\sqrt{2}$.
則$\frac{{a}_{11}+{a}_{16}}{{a}_{10}+{a}_{15}}$=$\frac{{q(a}_{10}+{a}_{15})}{{a}_{10}+{a}_{15}}$=q=1+$\sqrt{2}$.
故選:B.
點評 本題考查了等差數列與等比數列的通項公式及其性質,考查了推理能力與計算能力,屬于中檔題.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | -1 | D. | 0 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | [-$\sqrt{3}$,$\sqrt{3}$] | B. | (-∞,$\sqrt{3}$] | C. | [-$\sqrt{3}$,+∞) | D. | (-∞,-$\sqrt{3}$]∪[$\sqrt{3}$,+∞) |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com