分析 利用余弦定理、基本不等式可得 3c2=a2+b2≥2ab,即 c2≥$\frac{2}{3}$ab,再利用同角三角函數(shù)的基本關(guān)系、正弦定理,把sinC•($\frac{1}{tanA}$+$\frac{1}{tanB}$)化為 $\frac{{c}^{2}}{ab}$,從而得到它的最小值.
解答 解:在△ABC中,∵已知abcosC=accosB+bccosA,∴由余弦定理可得$\frac{{a}^{2}{+b}^{2}{-c}^{2}}{2}$=$\frac{{a}^{2}{+c}^{2}{-b}^{2}}{2}$+$\frac{^{2}{+c}^{2}{-a}^{2}}{2}$,
即 3c2=a2+b2≥2ab,即 c2≥$\frac{2}{3}$ab,當(dāng)且僅當(dāng)a=b時,取等號.
則sinC•($\frac{1}{tanA}$+$\frac{1}{tanB}$)=$\frac{sinCcosA}{sinA}$+$\frac{sinCcosB}{sinB}$=$\frac{sinC(sinAcosB+cosAsinB)}{sinAsinB}$=$\frac{{sin}^{2}C}{sinAsinB}$=$\frac{{c}^{2}}{ab}$≥$\frac{2}{3}$,
即sinC•($\frac{1}{tanA}$+$\frac{1}{tanB}$)的最小值為$\frac{2}{3}$,
故答案為:$\frac{2}{3}$.
點(diǎn)評 本題主要考查正弦定理、余弦定理、同角三角函數(shù)的基本關(guān)系,基本不等式的應(yīng)用,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\overrightarrow{a}$與$\overrightarrow$相等 | B. | 如果$\overrightarrow{a}$與$\overrightarrow$平行,那么$\overrightarrow{a}$與$\overrightarrow$相等 | ||
C. | $\overrightarrow{a}$與$\overrightarrow$共線 | D. | 如果$\overrightarrow{a}$與$\overrightarrow$平行,那么$\overrightarrow{a}$=$\overrightarrow$或$\overrightarrow{a}$=-$\overrightarrow$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
類別 | 老年教師 | 中年教師 | 青年教師 | 合計(jì) |
人數(shù) | 900 | 1800 | 1600 | 4300 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\overline{x}$<$\overline{y}$,m<n | B. | $\overline{x}$>$\overline{y}$,m<n | C. | $\overline{x}$>$\overline{y}$,m>n | D. | $\overline{x}$<$\overline{y}$,m>n |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | A?B | B. | A?B | C. | A=B | D. | A?B |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com