【題目】已知橢圓上一點關(guān)于原點的對稱點為點,為其右焦點,若,設(shè),且,則該橢圓離心率的取值范圍為 ( )

A. B. C. D.

【答案】A

【解析】

由題設(shè)條件結(jié)合橢圓的對稱性推導(dǎo)出|AF|+|BF|=2a,|AB|=2c,設(shè)∠ABFα,則能推導(dǎo)出2csinα+2ccosα=2a,由此能求出結(jié)果.

橢圓焦點在x軸上,橢圓上點A關(guān)于原點的對稱點為點B,F為其右焦點,設(shè)左焦點為F1,連接AF,AF1,BF,BF1,∴四邊形AFBF1為長方形.

根據(jù)橢圓的定義:|AF|+|AF1|=2a,∠ABFα,則:∠AF1Fα,∴2a=2ccosα+2csinα

橢圓的離心率e,

,

則:≤sin(α+ )≤1,

,

∴橢圓離心率e的取值范圍:,

故選:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用0與1兩個數(shù)字隨機(jī)填入如圖所示的5個格子里,每個格子填一個數(shù)字,并且從左到右數(shù),不管數(shù)到哪個格子,總是1的個數(shù)不少于0的個數(shù),則這樣填法的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下面幾種說法:

①相等向量的坐標(biāo)相同;

②若向量滿足,則

③若,,,是不共線的四點,則四邊形為平行四邊形的充要條件;

的充要條件是.

其中正確說法的個數(shù)是(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對任意實數(shù),給出下列命題:①的充要條件;②是無理數(shù)是無理數(shù)的充要條件;③的充分條件;④的必要條件;其中真命題的個數(shù)是(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】自出生之日起,人的情緒、體力、智力等心理、生理狀況就呈周期變化,變化由線為.根據(jù)心理學(xué)家的統(tǒng)計,人體節(jié)律分為體力節(jié)律、情緒節(jié)律和智力節(jié)律三種.這些節(jié)律的時間周期分別為23天、28天、33.每個節(jié)律周期又分為高潮期、臨界日和低潮期三個階段.以上三個節(jié)律周期的半數(shù)為臨界日,這就是說11.5天、14天、16.5天分別為體力節(jié)律、情緒節(jié)律和智力節(jié)律的臨界日.臨界日的前半期為高潮期,后半期為低潮期.生日前一天是起始位置(平衡位置),已知小英的生日是2003320日(每年按365天計算).

1)請寫出小英的體力、情緒和智力節(jié)律曲線的函數(shù);

2)試判斷小英在2019422日三種節(jié)律各處于什么階段,當(dāng)日小英是否適合參加某項體育競技比賽?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四個命題:

①函數(shù)是奇函數(shù)且在定義域上是單調(diào)遞增函數(shù);

②函數(shù)有兩個零點,則;

③函數(shù),則的解集為;

④函數(shù)的單調(diào)遞減區(qū)間為.

其中正確命題的序號為__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有限集合S中元素的個數(shù)記做,設(shè)A,B都為有限集合,給出下列命題:

的充要條件是

的必要不充分條件是

的充分不必要條件是

的充要條件是

其中,真命題有(

A.①②③B.①②C.②③D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將邊長為的正三角形利用平行于邊的直線剖分為個邊長為1的小正三角形.3的情形.證明:存在正整數(shù),使得小三角形的頂點中可選出2000個點,其中,任意三點均不構(gòu)成正三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】是個循環(huán)小數(shù),表示的小數(shù)點后第位開始,連續(xù)位上的數(shù)字之積.證明存在自然數(shù)、,對任意的、,均有

查看答案和解析>>

同步練習(xí)冊答案