8.經(jīng)過點(diǎn)P(0,2)且斜率為2的直線方程為( 。
A.2x+y+2=0B.2x-y-2=0C.2x-y+2=0D.2x+y-2=0

分析 利用點(diǎn)斜式即可得出.

解答 解:由點(diǎn)斜式可得:y-2=2(x-0),化為:2x-y+2=0.
故選:C.

點(diǎn)評 本題考查了直線的點(diǎn)斜式,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)函數(shù)f(x)=x3-ax-b,x∈R,其中a,b∈R.
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)若f(x)存在極值點(diǎn)x0,且f(x1)=f(x0),其中x1≠x0;求證:x1+2x0=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.定義于R上的偶函數(shù)f(x)滿足對任意的x∈R都有f(x+8)=f(x)+f(4),若當(dāng)x∈[0,2]時(shí),f(x)=2-x,則f(2017)=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知復(fù)數(shù)$\frac{1-i}{\overline{z}}$=4+2i(i為虛數(shù)單位),則復(fù)數(shù)z在復(fù)平面上的對應(yīng)點(diǎn)所在的象限是( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知橢圓$\frac{{x}^{2}}{9}$+y2=1,過左焦點(diǎn)F1傾斜角為$\frac{π}{6}$的直線交橢圓于A、B兩點(diǎn).求弦AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列命題正確的是( 。
A.$a+\frac{1}{a}$的最小值是2B.${a^2}+\frac{1}{a^2}$的最小值是2
C.$a+\frac{1}{a}$的最大值是2D.${a^2}+\frac{1}{a^2}$的最大值是2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.不等式組$\left\{\begin{array}{l}x≥0\\ y≥0\\ x+y-2≤0\end{array}\right.$所表示的平面區(qū)域的面積為(  )
A.1B.$\frac{3}{2}$C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.偶函數(shù)y=f(x)在區(qū)間[0,4]上單調(diào)遞增,則有( 。
A.f(-1)>f($\frac{π}{3}$)>f(-π)B.f($\frac{π}{3}$)>f(-1)>f(-π)C.f(-π)>f($\frac{π}{3}$)>f(-1)D.f(-1)>f(-π)>f($\frac{π}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.下列函數(shù)中,在其定義域上既是偶函數(shù)又在(0,+∞)上單調(diào)遞減的是( 。
A.y=x2B.y=x+1C.y=-lg|x|D.y=-2x

查看答案和解析>>

同步練習(xí)冊答案