7.已知實(shí)數(shù)x,y滿(mǎn)足$\left\{\begin{array}{l}{x-y+1≥0}\\{3x-y-3≤0}\\{y≥0}\end{array}\right.$,則z=3x+2y的最大值為( 。
A.2B.3C.12D.15

分析 由約束條件作出可行域,化目標(biāo)函數(shù)為直線(xiàn)方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)得答案.

解答 解:由約束條件$\left\{\begin{array}{l}{x-y+1≥0}\\{3x-y-3≤0}\\{y≥0}\end{array}\right.$作出可行域如圖,

聯(lián)立$\left\{\begin{array}{l}{x-y+1=0}\\{3x-y-3=0}\end{array}\right.$,解得A(2,3),
化目標(biāo)函數(shù)z=3x+2y為$y=-\frac{3}{2}x+\frac{z}{2}$,
由圖可知,當(dāng)直線(xiàn)$y=-\frac{3}{2}x+\frac{z}{2}$過(guò)A時(shí),直線(xiàn)在y軸上的截距最大,z有最大值為z=3×2+2×3=12.
故選:B.

點(diǎn)評(píng) 本題考查簡(jiǎn)單的線(xiàn)性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.在如圖所示的電路圖中,開(kāi)關(guān)a,b,c閉合與斷開(kāi)的概率都是$\frac{1}{2}$,且是相互獨(dú)立的,則燈亮的概率是(  )
A.$\frac{1}{8}$B.$\frac{3}{8}$C.$\frac{1}{4}$D.$\frac{7}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.設(shè)不等式組$\left\{\begin{array}{l}{3x+y-10≥0}\\{x-y-6≤0}\\{x+3y-6≤0}\end{array}\right.$表示的平面區(qū)域?yàn)镈,若函數(shù)y=logax(a>0且a≠1)的圖象上存在區(qū)域D上的點(diǎn),則實(shí)數(shù)a的取值范圍是(0,$\frac{1}{2}$]∪[3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.某校高二奧賽班N名學(xué)生的物理測(cè)評(píng)成績(jī)(滿(mǎn)分120分)分布直方圖如圖,已知分?jǐn)?shù)在100-110的學(xué)生數(shù)有21人.
(1)求總?cè)藬?shù)N和分?jǐn)?shù)在110-115分的人數(shù)n;
(2)現(xiàn)準(zhǔn)備從分?jǐn)?shù)在110-115的n名學(xué)生(女生占$\frac{1}{3}$)中任選3人,求其中恰好含有一名女生的概率;
(3)為了分析某個(gè)學(xué)生的學(xué)習(xí)狀態(tài),對(duì)其下一階段的學(xué)生提供指導(dǎo)性建議,對(duì)他前7次考試的數(shù)學(xué)成績(jī)x(滿(mǎn)分150分),物理成績(jī)y進(jìn)行分析,如表是該生7次考試的成績(jī).
數(shù)學(xué)888311792108100112
物理949110896104101106
已知該生的物理成績(jī)y與數(shù)學(xué)成績(jī)x是線(xiàn)性相關(guān)的,若該生的數(shù)學(xué)成績(jī)達(dá)到130分,請(qǐng)你估計(jì)他的物理成績(jī)大約是多少?
附:對(duì)于一組數(shù)據(jù)(u1,v1),(u2,v2)…(un,vn),其回歸線(xiàn)v=α+βu的斜率和截距的最小二乘估計(jì)分別為:$\stackrel{∧}{β}$=$\frac{\sum_{i=1}^{n}({u}_{i}-\overline{u})({v}_{i}-\overline{v})}{\sum_{i=1}^{n}({u}_{i}-\overline{u})^{2}}$,$\stackrel{∧}{a}$=$\overline{v}$-$\stackrel{∧}{β}$$\overline{u}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.在區(qū)間[0,2]上分別任取兩個(gè)數(shù)m,n,若向量$\overrightarrow{a}$=(m,n),則|$\overrightarrow{a}$|≤2的概率是( 。
A.$\frac{π}{2}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.在△ABC中,角A.B.C的對(duì)邊分別為a,b,c,已知A=60°,a=2$\sqrt{3}$,b=2$\sqrt{2}$,則角B=(  )
A.45°B.30°C.90°D.45°或135°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知sinα=2cosα,則tan2α=-$\frac{4}{3}$,cos2α=-$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.最近,國(guó)家統(tǒng)計(jì)局公布:2015年我國(guó)經(jīng)濟(jì)增速為6.9%,創(chuàng)近25年新低.在當(dāng)前經(jīng)濟(jì)增速放緩的情況下,轉(zhuǎn)變經(jīng)濟(jì)發(fā)展方式,淘汰落后產(chǎn)能,尋找新的經(jīng)濟(jì)增長(zhǎng)點(diǎn)是當(dāng)務(wù)之急.為此,經(jīng)濟(jì)改革專(zhuān)家組到基層調(diào)研,由一幅反映某廠(chǎng)6年來(lái)這種產(chǎn)品的總產(chǎn)量C與時(shí)間t(年)的函數(shù)關(guān)系圖初步了解到:某工廠(chǎng)6年來(lái)生產(chǎn)某種產(chǎn)品的情況是:前3年年產(chǎn)量的增長(zhǎng)速度越來(lái)越快,后3年年產(chǎn)量保持不變,則他們看到的圖是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.如圖,已知四邊形ABCD是等腰梯形,E、F是腰AD、BC中點(diǎn),M、N是EF兩個(gè)三等分點(diǎn),下底是上底2倍,若向量$\overrightarrow{AB}$=$\overrightarrow{a}$,向量$\overrightarrow{BC}$=$\overrightarrow$,則向量$\overrightarrow{AM}$用$\overrightarrow{a}$、$\overrightarrow$表示為( 。
A.$\frac{1}{2}$($\overrightarrow{a}+\overrightarrow$)B.-$\frac{1}{2}$($\overrightarrow{a}$+$\overrightarrow$)C.$\frac{2}{3}$$\overrightarrow{a}$+$\frac{1}{2}\overrightarrow$D.$\frac{1}{3}\overrightarrow{a}$+$\frac{2}{3}$$\overrightarrow$

查看答案和解析>>

同步練習(xí)冊(cè)答案