19.已知sinα=2cosα,則tan2α=-$\frac{4}{3}$,cos2α=-$\frac{3}{5}$.

分析 由已知利用同角三角函數(shù)基本關(guān)系式可求tanα,利用二倍角的正切函數(shù)公式可求tan2α,利用二倍角公式,同角三角函數(shù)基本關(guān)系式可求cos2α.

解答 解:∵sinα=2cosα,
∴tanα=2,
∴tan2α=$\frac{2tanα}{1-ta{n}^{2}α}$=-$\frac{4}{3}$,
∴cos2α=cos2α-sin2α=$\frac{co{s}^{2}α-si{n}^{2}α}{co{s}^{2}α+si{n}^{2}α}$=$\frac{1-ta{n}^{2}α}{1+ta{n}^{2}α}$=-$\frac{3}{5}$.
故答案為:-$\frac{4}{3}$,-$\frac{3}{5}$.

點評 本題主要考查了同角三角函數(shù)基本關(guān)系式,二倍角的正切函數(shù)公式二倍角余弦函數(shù)公式在三角函數(shù)化簡求值中的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.函數(shù)f(x)是定義在R上的偶函數(shù),其圖象關(guān)于直線x=1對稱,若f(1)=2016,則f(2015)=2016.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.執(zhí)行如圖的程序框圖,若輸入x=-2016,則輸出的結(jié)果為(  )
A.2015B.2016C.2116D.2048

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知實數(shù)x,y滿足$\left\{\begin{array}{l}{x-y+1≥0}\\{3x-y-3≤0}\\{y≥0}\end{array}\right.$,則z=3x+2y的最大值為( 。
A.2B.3C.12D.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.“k=1”是“直線l1:kx+y+2=0與直線l2:x+ky-k=0平行”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知等比數(shù)列{an}的前n項和為Sn,a3=1且a4,a3+a5,a6為等差數(shù)列{bn}的前三項.
(1)求Sn與數(shù)列{bn}的通項公式;
(2)設(shè)數(shù)列{$\frac{1}{{{b_n}{b_{n+1}}}$}的前n項和Tn,試問是否存在正整數(shù)m,對任意的n∈N*使得Tn•bm≤1?若存在請求出m的最大值,若不存在請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)變量x,y滿足約束條件$\left\{\begin{array}{l}{x+2y-5≤0}\\{x-y-2≤0}\\{x≥0}\end{array}\right.$,則z=|2x+3y-2|的取值范圍是(  )
A.[7,8]B.[0,8]C.[$\frac{11}{2}$,8]D.[$\frac{11}{2}$,7]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知直線l:y=k(x+2),曲線$Γ:\sqrt{1-{{(x-1)}^2}}-y=0$,則當(dāng)k∈[-1,1],直線l與曲線Γ有兩個交點的概率為(  )
A.$\frac{{\sqrt{2}}}{8}$B.$\frac{{\sqrt{2}}}{6}$C.$\frac{{\sqrt{2}}}{4}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,在四棱錐P-ABCD中,底面ABCD是棱長為a正方形,側(cè)棱PD⊥底面ABCD,PD=DC,E是PC中點,AC與BD交于O點.
(1)求證:BC⊥平面PCD;
(2)求點C到平面BED的距離.

查看答案和解析>>

同步練習(xí)冊答案