精英家教網 > 高中數學 > 題目詳情
8.已知A(0,2,3),B(-2,1,6),C(1,-1,5),求方向向量為$\overrightarrow j=(0,0,1)$的直線與平面ABC所成角的余弦值.

分析 求出平面ABC的法向量為$\overrightarrow{n}$=(1,1,1),利用方向向量為$\overrightarrow j=(0,0,1)$的直線與平面ABC所成角的余弦值=sin<$\overrightarrow{n}$,$\overrightarrow{j}$>,即可得出結論

解答 解:設平面ABC的法向量為$\overrightarrow{n}$=(a,b,c),則$\left\{\begin{array}{l}{a-3b+2c=0}\\{-2a-b+3c=0}\end{array}\right.$,
取a=1,可得平面ABC的法向量為$\overrightarrow{n}$=(1,1,1),
∴cos<$\overrightarrow{n}$,$\overrightarrow{j}$>=$\frac{\sqrt{3}}{3}$,
∴方向向量為$\overrightarrow j=(0,0,1)$的直線與平面ABC所成角θ的余弦值cosθ=sin<$\overrightarrow{n}$,$\overrightarrow{j}$>=$\sqrt{1-\frac{1}{3}}$=$\frac{\sqrt{6}}{3}$.

點評 本題考查線面角,考查向量知識的運用,考查學生分析解決問題的能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

18.已知集合A={x|y=2x},B={x|$\sqrt{x}$≤2,x∈Z},則A∩B=(  )
A.(0,2]B.[0,4]C.{1,2,3,4}D.{0,1,2,3,4}

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

19.冪函數f(x)的圖象經過點($\sqrt{2}$,2),點(-2,$\frac{1}{4}$)在冪函數g(x)的圖象上,當f(x)>g(x)時,x的取值范圍為x<-1或x>1.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

16.已知全集U=R,函數y=$\sqrt{-{x}^{2}+2x+8}$的定義域為集合A,函數y=$\frac{(x-1)^{0}}{\sqrt{3-x}}$的定義域為集合B.
(1)求集合A和集合B;
(2)求A∪B,A∩(∁UB).

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

3.已知向量$\overrightarrow a=(2,-1,3),\overrightarrow b=(-4,2,x)$,若$\overrightarrow a⊥\overrightarrow b$,則x的等于( 。
A.2B.-2C.$\frac{10}{3}$D.-$\frac{10}{3}$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

13.已知命題p:?x∈R,x-2>log2x,命題q:?x∈R,x2>0,則(  )
A.p∨q是假命題B.p∨(¬q)是假命題C.p∧q是真命題D.p∧(¬q)是真命題

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

20.下列說法正確的是( 。
A.命題“?x∈R,使得x2>2x”的否定是“?x∈R,使得x2≤2x
B.“若a∈(0,1),則關于x的不等式ax2+2ax+1>0的解集為R”的逆命題為真
C.“若a、b不都是偶數,則a+b不是偶數”的否命題為假
D.“已知a,b∈R若a+b≠3,則a≠2或b≠1”的逆否命題為真

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

17.對任意實數若a?b的運算規(guī)則如圖所示,則$(2cos\frac{5π}{3})?(lo{g_2}4)$的值為( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

18.下列命題中正確的是( 。
A.命題“若x∈R,則x2≥0”的否命題為:“若x∈R,則x2<0”
B.“sinα=1”是“α=$\frac{π}{2}$”的充分不必要條件
C.若命題p為真命題,命題q為假命題,則命題“p且q”為真命題
D.命題“對任意x∈R,都有2x>0”的否定是“存在x0∈R,都有2x0≤0”

查看答案和解析>>

同步練習冊答案