6.設(shè)集合M={α|α=45°+k•90°,k∈Z},N={α|α=90°+k•45°,k∈z},則集合M與N的關(guān)系是( 。
A.M∩N=∅B.M?NC.N?MD.M=N

分析 在集合N中,k=2n,或k=2n+1,n∈Z,能過說明M的元素都是集合N的元素,而集合N中存在元素不在集合M中,從而便得出M?N

解答 解:對于集合N,k=2n,或k=2n+1,n∈Z;
k=2n+1時,x=n•90°+45°+90°=(n+1)•90°+45°,n+1∈Z;
又M的元素x=k•90°+45°,k∈Z;
∴M的元素都是N的元素;
而k=2n時,x=k•90°+90°;
∴N中存在元素x∉M;
∴M?N.
故選:C.

點評 考查整數(shù)可以分成奇數(shù)和偶數(shù),描述法表示集合,知道x=k•90°+45°,k∈Z,和x=(n+1)•90°+45°,n∈Z,表示的元素相同,真子集的概念及判斷過程.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

20.已知a>b>0,橢圓C1的方程為$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1,雙曲線C2的方程為$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1,C1與C2的離心率之積為$\frac{{\sqrt{3}}}{2}$,則C1的離心率為( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{3}}}{4}$D.$\frac{{\sqrt{6}}}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.若不等式x2-2ax+a>0對一切實數(shù)x∈R恒成立,則關(guān)于t的不等式a${\;}^{{t}^{2}+2t-3}$<1的解集為(-∞,-3)∪(1,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知函數(shù)f(x)=$\left\{\begin{array}{l}1-{x^2}(x≤1)\\{x^2}+x-2(x>1)\end{array}$則$f[\frac{1}{f(2)}]$的值為(  )
A.$\frac{15}{16}$B.$\frac{8}{9}$C.$-\frac{27}{16}$D.18

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知m、n∈R+,f(x)=|x+m|+|2x-n|.
(1)求f(x)的最小值;
(2)若f(x)的最小值為2,證明:4(m2+$\frac{{n}^{2}}{4}$)的最小值為8.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.在數(shù)列{an}中,a1=2,2(an+1-1)(an-1)+an+1-an=0(n∈N*),若an<$\frac{201}{199}$,則n的最小值為( 。
A.50B.51C.100D.101

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.設(shè)向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$+$\overrightarrow$|=$\sqrt{20}$,$\overrightarrow{a}$•$\overrightarrow$=4,則|$\overrightarrow{a}$-$\overrightarrow$|=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知函數(shù)f(x)=$\frac{x+a}{{x}^{2}+b}$的圖象在點M(-1,f(-1))處的切線方程為x-4y+1=0.
(Ⅰ)求函數(shù)y=f(x)的解析式;
(Ⅱ)求函數(shù)y=f(x)的極值.

查看答案和解析>>

同步練習冊答案