【題目】如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD是等腰梯形,AD∥BC,AC⊥BD.
(1)證明:BD⊥PC;
(2)若AD=4,BC=2,設(shè)AC∩BD=O,且∠PDO=60°,求四棱錐P-ABCD的體積.
【答案】(1)見解析;(2)12
【解析】
(1)可證平面,從而得到.
(2)連結(jié),根據(jù)可得,再根據(jù)均為等腰直角三角形得到梯形的高和的長(zhǎng)度,從而得到的長(zhǎng)度后可利用體積公式計(jì)算四棱錐的體積.
證明:(1)因?yàn)?/span>平面,平面,
所以.
又,是平面內(nèi)的兩條相交直線,
所以平面.
而平面,所以.
(2)連結(jié),由(1)知,平面,
平面知,.在中,
因?yàn)?/span>,所以,得.
又因?yàn)樗倪呅?/span>為等腰梯形,,
所以均為等腰直角三角形.
從而梯形的高為,
于是梯形面積.
在等腰直角三角形中,,
所以,.
故四棱錐的體積為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】記數(shù)列的前n項(xiàng)和為,其中所有奇數(shù)項(xiàng)之和為,所有偶數(shù)項(xiàng)之和為
若是等差數(shù)列,項(xiàng)數(shù)n為偶數(shù),首項(xiàng),公差,且,求;
若數(shù)列的首項(xiàng),滿足,其中實(shí)常數(shù),且,請(qǐng)寫出滿足上述條件常數(shù)t的兩個(gè)不同的值和它們所對(duì)應(yīng)的數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校為培養(yǎng)學(xué)生的興趣愛(ài)好,提高學(xué)生的綜合素養(yǎng),在高一年級(jí)開設(shè)各種形式的校本課程供學(xué)生選擇(如書法講座、詩(shī)歌鑒賞、奧賽講座等).現(xiàn)統(tǒng)計(jì)了某班50名學(xué)生一周用在興趣愛(ài)好方面的學(xué)習(xí)時(shí)間(單位:h)的數(shù)據(jù),按照[0,2),[2,4),[4,6),[6,8),[8,10]分成五組,得到了如下的頻率分布直方圖.
(1)求頻率分布直方圖中m的值及該班學(xué)生一周用在興趣愛(ài)好方面的平均學(xué)習(xí)時(shí)間;
(2)從[4,6),[6,8)兩組中按分層抽樣的方法抽取6人,再?gòu)倪@6人中抽取2人,求恰有1人在[6,8)組中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】秦九韶是我國(guó)南宋時(shí)期的數(shù)學(xué)家,普州(現(xiàn)四川省安岳縣)人,他在所著的《數(shù)書九章》中提出的多項(xiàng)式求值的秦九韶算法,至今仍是比較先進(jìn)的算法.如圖所示的程序框圖給出了利用秦九韶算法求某多項(xiàng)式值的一個(gè)實(shí)例.若輸入n,x的值分別為5,2,則輸出v的值為( )
A. 64 B. 68
C. 72 D. 133
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四棱錐的底面是邊長(zhǎng)為的菱形,,點(diǎn)E是棱BC的中點(diǎn),,點(diǎn)P在平面ABCD的射影為O,F(xiàn)為棱PA上一點(diǎn).
1求證:平面平面BCF;
2若平面PDE,,求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題:函數(shù)的圖像恒過(guò)定點(diǎn);命題:若函數(shù)為偶函數(shù),則函數(shù)的圖象關(guān)于直線對(duì)稱,則下列命題為真命題的是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4一4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長(zhǎng)度單位.已知直線的參數(shù)方程為(為參數(shù)),曲線的極坐標(biāo)方程為.
(1)求直線的普通方程與曲線的直角坐標(biāo)方程;
(2)若直線與曲線交于,兩點(diǎn),求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在正實(shí)數(shù)上的函數(shù),其中表示不小于x的最小整數(shù),如,,當(dāng)時(shí),函數(shù)的值域?yàn)?/span>,記集合中元素的個(gè)數(shù)為,則=____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com