9.若過(guò)點(diǎn)(0,2)的直線與拋物線y2=8x有且只有一個(gè)公共點(diǎn),則這樣的直線有( 。
A.一條B.兩條C.三條D.四條

分析 當(dāng)過(guò)點(diǎn)(0,2)的直線的斜率不存在時(shí),直線的方程為x=0;當(dāng)過(guò)點(diǎn)(0,2)的直線的斜率等于0時(shí),直線的方程為y=2;當(dāng)過(guò)點(diǎn)(0,2)的直線斜率存在且不為零時(shí),設(shè)為k,把y=kx+2,代入拋物線方程,由判別式等于0,求得k的值,從而得到結(jié)論.

解答 解:拋物線y2=8x的焦點(diǎn)為(2,0),
當(dāng)過(guò)點(diǎn)(0,2)的直線的斜率不存在時(shí),直線的方程為x=0,即直線為y軸時(shí),與拋物線y2=8x只有一個(gè)公共點(diǎn).
當(dāng)過(guò)點(diǎn)(0,2)的直線的斜率等于0時(shí),直線的方程為y=2,與拋物線y2=8x只有一個(gè)公共點(diǎn).
當(dāng)過(guò)點(diǎn)(0,2)的直線斜率存在且不為零時(shí),設(shè)為k,那么直線方程為:y+2=kx,即:y=kx+2,
代入拋物線方程,可得 k2x2+(4k-8)x+4=0,由判別式等于0 可得:64-64k=0,
∴k=1,此時(shí),直線的方程為y=x+2.
綜上,滿足條件的直線共有3條,
故選:C.

點(diǎn)評(píng) 本題考查直線和圓錐曲線的位置關(guān)系,體現(xiàn)了分類討論的數(shù)學(xué)思想,求出直線的斜率,是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.函數(shù)f(x)=2sin($\frac{2π}{3}$x+$\frac{π}{6}$)的部分圖象如圖所示.
(1)寫出f(x)的最小正周期及圖中x0,y0的值;
(2)求f(x)在區(qū)間$[{-\frac{1}{2},\frac{3}{4}}]$上的最大值和最小值.
(3)求f(x)在區(qū)間[-5,-2]上的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.-225°化為弧度為(  )
A.$\frac{3π}{4}$B.-$\frac{7π}{4}$C.-$\frac{5π}{4}$D.-$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.在數(shù)列{an}中,a1=0,an+2+(-1)nan=2.記Sn是數(shù)列{an}的前n項(xiàng)和,則S2016-S2013=2016.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.對(duì)任意函數(shù)f(x),x∈D,可按如圖構(gòu)造一個(gè)數(shù)列發(fā)生器,數(shù)列發(fā)生器產(chǎn)生數(shù)列{xn}.
(1)若定義函數(shù)f(x)=$\frac{4x-2}{x+1}$,且輸入x0=$\frac{49}{65}$,請(qǐng)寫出數(shù)列{xn}的所有項(xiàng);
(2)若定義函數(shù)f(x)=2x+3,且輸入x0=-1,求數(shù)列{xn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)f(x)=-ex+ex(其中e=2.71828…是自然對(duì)數(shù)的底數(shù))
(1)求函數(shù)f(x)的最大值;
(2)設(shè)g(x)=lnx+$\frac{1}{2}$x2+ax.若對(duì)任意x1∈[0,2],總存在x2∈[0,2],使得g(x1)<f(x2),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.己知函數(shù)f(x)=ex-ex,g(x)=2ax+a,其中e為自然對(duì)數(shù)的底數(shù),a∈R.
(1)求證:f(x)≥0;
(2)若存在x0∈R,使f(x0)=g(x0),求a的取值范圍;
(3)若對(duì)任意的x∈(-∞,-1),f(x)≥g(x)恒成立,求a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.對(duì)于實(shí)數(shù)a,b,c,“a>b”是“ac2>bc2”的必要不充分條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.若復(fù)數(shù)z滿足(1+i)z=2,則z的虛部為( 。
A.-1B.-iC.iD.1

查看答案和解析>>

同步練習(xí)冊(cè)答案