13.已知定義在R上的函數(shù)f(x)滿足:①f(x)+f(2-x)=0;②f(x+2)=f(-x-4);③當x∈[-1,1]時,f(x)=$\left\{\begin{array}{l}{1-{x}^{2},x∈[-1,0]}\\{cos\frac{π}{2}x,x∈(0,1]}\end{array}\right.$,則函數(shù)y=f(x)-($\frac{1}{2}$)|x|在區(qū)間[-3,3]上的零點個數(shù)為5.

分析 由①f(x)+f(2-x)=0,求得x在[1,3]上的f(x)的解析式;再由②求得x在[-3,-1]上的解析式,畫出f(x)和y═($\frac{1}{2}$)|x|在[-3,3]的圖象,通過圖象觀察,可得它們有5個交點,即可得到零點的個數(shù).

解答 解:①f(x)+f(2-x)=0,
當1≤x≤2時,0≤2-x≤1,f(2-x)=cos(2-x)=-cosx,
則f(x)=-f(2-x)=cosx;
當2<x≤3時,-1≤x<0,f(2-x)=1-(2-x)2,
則f(x)=-f(2-x)=(2-x)2-1.
由②f(x+2)=f(-x-4),即為f(x)=f(-x-2),
當-3≤x≤-2時,0≤-2-x≤1,f(-2-x)=cos(-2-x)=-cosx,
則f(x)=-f(-2-x)=-cosx;
當-2<x≤-1時,-1≤-2-x<0,f(-2-x)=1-(-2-x)2
則f(x)=f(-2-x)=1-(-2-x)2
y=f(x)-($\frac{1}{2}$)|x|在區(qū)間[-3,3]上的零點
即為y=f(x)和y=($\frac{1}{2}$)|x|在[-3,3]的交點個數(shù).
作出y=f(x)和y═($\frac{1}{2}$)|x|在[-3,3]的圖象,
通過圖象觀察,可得它們有5個交點,
即有5個零點.
故答案為:5.

點評 本題考查函數(shù)的性質和運用,考查函數(shù)方程的轉化思想,注意運用數(shù)形結合的思想方法,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

3.設隨機變量X:B(n,p),若X的數(shù)學期望E(X)=2,方差D(X)=$\frac{4}{3}$,則P(X=2)=( 。
A.$\frac{13}{16}$B.$\frac{4}{243}$C.$\frac{13}{243}$D.$\frac{80}{243}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.如果將直線l向右平移3個單位,再向上平移2個單位后所得的直線與l重合,則該直線l的斜率為$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.如圖,F(xiàn)1,F(xiàn)2是橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$的左、右兩個焦點,|F1F2|=4,長軸長為6,又A,B分別是橢圓C上位于x軸上方的兩點,且滿足$\overrightarrow{A{F_1}}$=2$\overrightarrow{B{F_2}}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)求直線AF1的方程;
(Ⅲ)求平行四邊形AA1B1B的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.設不等式組$\left\{\begin{array}{l}{x-4y≤-3}\\{3x+5y≤25}\\{x≥1}\end{array}\right.$,表示的區(qū)域為M,若直線l:y=k(x+2)上存在區(qū)域M內(nèi)的點,則k的取值范圍是$[\frac{2}{7},\frac{22}{15}]$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.設f(x)=3ax2+2bx+c,若a+b+c=0,f(0)>0,f(1)>0
(1)求證:a>0,-2$<\frac{a}$<-1;
(2)函數(shù)f(x)在(0,1)內(nèi)有零點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.cos$\frac{29π}{6}$的值為( 。
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.-$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.過(0,$\sqrt{2}$)斜率為k的直線l與橢圓$\frac{x^2}{2}$+y2=1交于不同兩點P、Q.
(1)求k取值范圍;
(2)是否存在k使得向量$\overrightarrow{OP}$•$\overrightarrow{OQ}$=1?若存在,求出k的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知函數(shù)y=f(x)是定義在R上的奇函數(shù),且當x<0時,不等式f(x)+xf′(x)<0成立,若a=(0.33)f(0.33),b=(logπ3)f(logπ3),c=(log3$\frac{1}{9}$)f(log3$\frac{1}{9}$),則a,b,c間的大小關系是( 。
A.a>b>cB.c>b>aC.c>a>bD.a>c>b

查看答案和解析>>

同步練習冊答案