12.若x,y滿足約束條件$\left\{\begin{array}{l}{x+y-2≤0}\\{x-2y+1≤0}\\{2x-y+2≥0}\end{array}\right.$,則z=3x-y的最小值為( 。
A.3B.-4C.-3D.-2

分析 畫出滿足條件的平面區(qū)域,求出角點的坐標,結(jié)合函數(shù)的圖象,從而求出z的最小值即可.

解答 解:畫出滿足約束條件$\left\{\begin{array}{l}{x+y-2≤0}\\{x-2y+1≤0}\\{2x-y+2≥0}\end{array}\right.$的平面區(qū)域,如圖示:

由z=3x-y得到y(tǒng)=3x-z,
顯然直線過A(-1,0)時,z最小,
z的最小值是-3,
故選:C.

點評 本題考查了簡單的線性規(guī)劃問題,考查數(shù)形結(jié)合思想,是一道中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

2.下列等式中,正確的個數(shù)是( 。
(1)$\root{n}{a^n}=|a|$;            
(2)若a∈R,則(a2-a+1)0=1;
(3)$\root{3}{{{x^4}+{y^3}}}=\root{3}{x^4}+y$;    
(4)$\root{3}{-1}=\root{6}{{{{(-1)}^2}}}$.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.設數(shù)列{an}的前n項和Sn滿足2Sn+3=3n+1,數(shù)列{bn}滿足bn=$\frac{2}{(n+1)lo{g}_{3}{a}_{n}}$.
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知數(shù)列{an}滿足a1=1,a2=2,an+2-an=1+(-1)n,則數(shù)列{an}的前30項的和為255.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.數(shù)列{an}滿足an=6-$\frac{9}{{a}_{n-1}}$(n∈N*,n≥2).
(1)求證:數(shù)列{$\frac{1}{{a}_{n}-3}$}是等差數(shù)列;
(2)若a1=6,求數(shù)列{|lgan|}的前999項的和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知數(shù)列{an}滿足a1+a2+…+an=n2+3n(n∈N+),則$\frac{{a}_{1}^{2}}{2}+\frac{{a}_{2}^{2}}{3}+…+\frac{{a}_{n}^{2}}{n+1}$=2n2+6n.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.長時間用手機上網(wǎng)嚴重影響著學生的身體健康,某中學為了解A、B兩班學生手機上網(wǎng)的時長,分別從這兩個班中隨機抽取5名同學進行調(diào)查,將他們平均每周手機上網(wǎng)的時長作為樣本,繪制成莖葉圖如圖所示(圖中的莖表示十位數(shù)字,葉表示個位數(shù)字).
(Ⅰ)分別求出圖中所給兩組樣本數(shù)據(jù)的平均值,并據(jù)此估計,哪個班的學生平均上網(wǎng)時間較長;
(Ⅱ)從A、B班的樣本數(shù)據(jù)中各隨機抽取一個不超過20的數(shù)據(jù)分別記為a,b,求a≤b的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.某企業(yè)2014年年底給全部的800名員工共發(fā)放2000萬元年終獎,該企業(yè)計劃從2015年起,10年內(nèi)每年發(fā)放的年終獎都比上一年增加60萬元,企業(yè)員工每年凈增a人.
(1)若a=10,在10年內(nèi),該企業(yè)的人均年終獎是否會超過3萬元?
(2)這10年內(nèi)為使人均年終獎年年有增長,該企業(yè)每年員工的凈增量不能超過多少人?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知向量$\overrightarrow{a}$=(cosα,sinβ),$\overrightarrow$=(sinα,cosβ),若$\overrightarrow{a}$∥$\overrightarrow$,則α,β的值可以是( 。
A.α=$\frac{π}{3}$,β=-$\frac{π}{3}$B.α=$\frac{π}{3}$,β=$\frac{2π}{3}$C.α=$\frac{π}{5}$,β=-$\frac{7π}{10}$D.α=$\frac{π}{3}$,β=-$\frac{π}{6}$

查看答案和解析>>

同步練習冊答案