9.若x,y滿足約束條件$\left\{\begin{array}{l}x≥0\\ x+3y≥4\\ 3x+y≤4\end{array}\right.$,則z=2x-y的最大值是1.

分析 作出不等式組對應(yīng)的平面區(qū)域,利用目標函數(shù)的幾何意義,利用平移法進行求解即可.

解答 解:作出不等式組對應(yīng)的平面區(qū)域如圖:(陰影部分).
由z=2x-y得y=2x-z,
平移直線y=2x-z,
由圖象可知當直線y=2x-z經(jīng)過點A時,直線y=2x-z的截距最小,
此時z最大.
由$\left\{\begin{array}{l}{x+3y=4}\\{3x+y=4}\end{array}\right.$,得$\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$,即A(1,1)
即zmax=2×1-1=1,
故答案為:1

點評 本題主要考查線性規(guī)劃的應(yīng)用,利用目標函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合的數(shù)學(xué)思想是解決此類問題的基本方法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知p:x2-8x-20≤0,q:(x-1+m)(x-1-m)≤0,(m>0),若q是p的必要不充分條件,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.直線l:(x+1)m+(y-1)n=0與圓x2+y2=2的位置關(guān)系是( 。
A.相切或相交B.相切或相離C.相切D.相離

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知cosα=-cos2$\frac{α}{2}$,則cos$\frac{α}{2}$的值等于±$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知點P(8m,3)是角α的終邊上一點,且cosα=-$\frac{4}{5}$,則實數(shù)m=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知數(shù)列{an}的前n項和為Sn,a1=1,若n≥2時,an是Sn與Sn-1的等差中項,則S5=81.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知非零向量$\overrightarrow a$,$\overrightarrow b$的夾角為60°,且|${\overrightarrow b}$|=1,|2$\overrightarrow a$-$\overrightarrow b}$|=1,則|${\overrightarrow a}$|=( 。
A.$\frac{1}{2}$B.1C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=mx2+$\frac{1}{x}$的圖象關(guān)于點O(0,0)對稱.
(1)求函數(shù)f(x)的解析式;
(2)若g(x)=(a+1)f(x)+x,g(x)在區(qū)間(0,2]上的值不小于6,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在一次班級聚會上,某班到會的女同學(xué)比男同學(xué)多6人,從這些同學(xué)中隨機挑選一人表演節(jié)目.若選到女同學(xué)的概率為$\frac{2}{3}$,則這班參加聚會的同學(xué)的人數(shù)為18人.

查看答案和解析>>

同步練習(xí)冊答案