已知f(x)=ax5+bx3+cx+1(a,b,c都不為零),若f(3)=11,則f(-3)=
 
考點(diǎn):函數(shù)奇偶性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)已知條件可求出a•35+b•33+3c=10,所以便可求出f(-3)=-(a•35+b•33+3c)+1=-9.
解答: 解:由f(3)=11得:
a•35+b•33+3c=10;
∴f(-3)=-(a•35+b•33+3c)+1=-9.
故答案為:-9.
點(diǎn)評:考查奇函數(shù)的定義,知道要求f(-3)需求a•35+b•33+c•3.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)滿足對定義域內(nèi)的任意x,都有f(x+2)+f(x)<2f(x+1),則函數(shù)f(x)可以是( 。
A、f(x)=2x+1
B、f(x)=x2-2x
C、f(x)=ex
D、f(x)=lnx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)M(5,-1),則它關(guān)于直線l:x+y-6=0的對稱點(diǎn)的坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法中正確的是( 。
A、命題“若x>y,則-x<-y”的逆命題是“若-x>-y,則x<y”
B、若命題P:?x∈R,x2+1>0,則¬P:?x∈R,x2+1>0
C、設(shè)l是一條直線,α,β是兩個(gè)不同的平面,若l⊥α,l⊥β,則α∥β
D、設(shè)x,y∈R,則“(x-y)•x2<0”是“x<y”的必要而不充分條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下面有五個(gè)命題:
①函數(shù)y=-sin4x+cos4x的最小正周期是π;
②終邊在y軸上的角的集合是{α|α=
2
,k∈Z}};
③把函數(shù)y=3sin(2x+
π
3
)的圖象向右平移
π
6
得到y(tǒng)=3sin2x的圖象;
④函數(shù)y=sin(x-
π
2
)在[0,π]上是單調(diào)遞減的;
⑤直線y=a(a為常數(shù))與正切曲線y=tanωx(ω>0)相交的相鄰兩點(diǎn)間的距離是
ω

其中真命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知cos(
π
2
+φ)=-
3
2
,且角φ的終邊上有一點(diǎn)(2,a)則a=( 。
A、-
3
B、2
3
C、±2
3
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax3+bsinx+1(a,b為常熟)且f(5)=7,則f(-5)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知lg(x-y)+lg(x+y)=lg2+lgx+lgy.求
x
y
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)i是虛數(shù)單位,復(fù)數(shù)z=
4+3i
1-2i
,則|z|=
 

查看答案和解析>>

同步練習(xí)冊答案