9.已知函數(shù)f(x)=3sin($\frac{x}{2}$+$\frac{π}{6}$)+3.

(1)寫出f(x)的值域(不寫過程);
(2)用五點作圖法作出f(x)在一個周期上的圖象;
(3)求f(x)的對稱軸;  
(4)求f(x)的對稱中心;
(5)求函數(shù)f(x)的單調(diào)減區(qū)間.

分析 (1)直接利用正弦函數(shù)的值域?qū)懗鰂(x)的值域;
(2)通過列表描點用五點作圖法作出f(x)在一個周期上的圖象;
(3)利用正弦函數(shù)的對稱軸方程,求解f(x)的對稱軸;  
(4)通過正弦函數(shù)的對稱中心,求解f(x)的對稱中心;
(5)利用正弦函數(shù)的單調(diào)減區(qū)間,即可求函數(shù)f(x)的單調(diào)減區(qū)間.

解答 解:(1)函數(shù)f(x)=3sin($\frac{x}{2}$+$\frac{π}{6}$)+3∈[0,-3].
(2)列表

X0$\frac{π}{2}$π$\frac{3π}{2}$
x-$\frac{π}{3}$$\frac{2π}{3}$$\frac{5π}{3}$$\frac{8π}{3}$$\frac{11π}{3}$
y36303
作出f(x)在一個周期上的圖象:

(2)對稱軸為$\frac{x}{2}$+$\frac{π}{6}$=$\frac{π}{2}$+kπ,
即x=$\frac{2π}{3}$+2kπ,k∈Z.
(3)令$\frac{x}{2}$+$\frac{π}{6}$=kπ,
即x=$-\frac{π}{3}$+2kπ,k∈Z
故對稱中心為($-\frac{π}{3}$+2kπ,3)(k∈Z)
(4)函數(shù)f(x)的單調(diào)減區(qū)間$\frac{x}{2}$+$\frac{π}{6}$∈[$\frac{π}{2}$+2kπ,$\frac{3π}{2}$+2kπ],(k∈Z)
即x∈[$\frac{2π}{3}$+4kπ,$\frac{8π}{3}$+4kπ].(k∈Z)

點評 本題考查正弦函數(shù)的圖象與性質(zhì),函數(shù)的單調(diào)性以及正弦函數(shù)對稱性,基本知識的考查.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.平面直角坐標(biāo)系xOy中,雙曲線C1:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的漸近線與拋物線C2:x2=2py(p>0)交于點O,A,B.若△OAB的垂心為C2的焦點,則C1的離心率為( 。
A.$\sqrt{2}$B.$\frac{3}{2}$C.2D.$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知數(shù)列{an}滿足:a1=1,an+1=3an+4n-2,(n∈N+
(1)求證:數(shù)列{an+2n}為等比數(shù)列,并求{an}的通項公式
(2)求{an}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知回歸方程為$\hat y=8x-70$,則該方程在樣本(10,13)處的殘差為( 。
A.10B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.(1)計算:${i^{2010}}+{(\sqrt{2}+\sqrt{2}i)^2}-{({\frac{{\sqrt{2}}}{1-i}})^4}$
(2)已知函數(shù)f(x)滿足$f(x)=f'(1){e^{x-1}}-f(0)x+\frac{1}{2}{x^2}$;求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=$\frac{{\sqrt{4x+5-{x^2}}}}{x+1}$的定義域為集合A,函數(shù)g(x)=lg(-x2+2x+m)的定義域為集合B.
(1)當(dāng)m=3時,求集合A∩B;
(2)若A∩B={x|-1<x<4},求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在直角坐標(biāo)系xOy中,以坐標(biāo)原點為極點,x軸正半軸為極軸建立極坐標(biāo)系,半圓C的極坐標(biāo)方程為ρ=2cosθ,θ∈[0,$\frac{π}{2}$].
(Ⅰ)求C的參數(shù)方程;
(Ⅱ)設(shè)點D在C上,C在D處的切線與直線l:y=$\sqrt{3}$x+2垂直,根據(jù)(Ⅰ)中你得到的參數(shù)方程,確定D的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在數(shù)列{an}中,已知a1=1,an+1-an=sin$\frac{(n+1)π}{2}$,記Sn為數(shù)列{an}的前n項和,則S2016=( 。
A.1009B.1008C.1007D.1006

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知圓C:x2+y2+ax+2y+a2=0和定點A(1,2),要使過點A的圓C的切線有且僅有兩條,則實數(shù)a的取值范圍是(  )
A.(-$\frac{2\sqrt{3}}{3}$,$\frac{2\sqrt{3}}{3}$)B.(-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$)C.(-∞,+∞)D.(0,+∞)

查看答案和解析>>

同步練習(xí)冊答案