分析 (I)圓C的極坐標(biāo)方程為ρ=2cosθ,即ρ2=2ρcosθ,利用互化公式可得直角坐標(biāo)方程,利用三角函數(shù)基本關(guān)系式可得:參數(shù)方程.
(II)設(shè)切點(diǎn)D(1+cosα,sinα),根據(jù)CD∥l,可得$\frac{sinα}{1+cosα-1}$=$\sqrt{3}$,解出即可得出.
解答 解:(I)圓C的極坐標(biāo)方程為ρ=2cosθ,即ρ2=2ρcosθ,可得直角坐標(biāo)方程:x2+y2-2x=0,配方為:(x-1)2+y2=1,圓心C(1,0).
可得參數(shù)方程為:$\left\{\begin{array}{l}{x=1+cosα}\\{y=sinα}\end{array}\right.$(α∈[0,π],α為參數(shù)).
(II)設(shè)切點(diǎn)D(1+cosα,sinα),∵CD∥l,則$\frac{sinα}{1+cosα-1}$=$\sqrt{3}$,tanα=$\sqrt{3}$,
解得α=$\frac{π}{3}$,
∴D$(\frac{3}{2},\frac{\sqrt{3}}{2})$.
點(diǎn)評(píng) 本題考查了極坐標(biāo)方程化為直角坐標(biāo)方程、圓的參數(shù)方程、圓的切線的性質(zhì)、斜率計(jì)算公式、相互平行的直線斜率之間的關(guān)系,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com