18.已知函數(shù)f(x)=$\frac{1}{2}$ax2+bx+1,其中a∈{2,4},b∈{1,3},從f(x)中隨機(jī)抽取1個(gè),則它在(-∞,-1]上是減函數(shù)的概率為( 。
A.$\frac{1}{2}$B.$\frac{3}{4}$C.$\frac{1}{6}$D.0

分析 寫出所有基本事件(a,b)的取法,求出滿足f(x)在區(qū)間(-∞,-1]上是減函數(shù)的(a,b)的個(gè)數(shù),然后利用古典概型概率計(jì)算公式求得概率;

解答 解:函數(shù)f(x)=$\frac{1}{2}$ax2+bx+1,其中a∈{2,4},b∈{1,3},
從f(x)中隨機(jī)抽取1個(gè),
基本事件總數(shù)n=2×2=4,
即f(x)共有四種等可能基本事件,分別為(a,b)。2,1)(2,3)(4,1)(4,3),
記事件A為“f(x)在區(qū)間(-∞,-1]上是減函數(shù)”,
由條件知f(x)開口一定向上,對(duì)稱軸為x=-$\frac{a}$,
事件A共有三種(2,1)(4,1)(4,3)等可能基本事件,
則P(A)=$\frac{3}{4}$.
∴f(x)在區(qū)間(-∞,-1]上是減函數(shù)的概率為$\frac{3}{4}$.
故選:B.

點(diǎn)評(píng) 本題考查概率的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意列舉法的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知a,b∈R,且ex≥a(x-1)+b對(duì)x∈R恒成立,則ab的最大值是( 。
A.$\frac{1}{2}{e^3}$B.$\frac{{\sqrt{2}}}{2}{e^3}$C.$\frac{{\sqrt{3}}}{2}{e^3}$D.e3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,把f(x)的圖象向右平移$\frac{π}{3}$個(gè)單位長度得到g(x)的圖象,則g(x)的單調(diào)遞增區(qū)間是(  )
A.$[{kπ-\frac{5π}{12},kπ+\frac{π}{12}}],k∈z$B.$[{kπ-\frac{π}{6},kπ+\frac{π}{3}}],k∈z$
C.$[{kπ-\frac{π}{12},kπ+\frac{5π}{12}}],k∈z$D.$[{kπ+\frac{π}{6},kπ+\frac{5π}{6}}],k∈z$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.直線y=-x-1的傾斜角為( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{2}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知$f(α)=\frac{{sin({\frac{π}{2}-α})sin({-α})tan({π-α})}}{{tan({-α})sin({π-α})}}$.
(Ⅰ)化簡f(α);       
(Ⅱ)若α為第四象限角,且$cos({\frac{3}{2}π-α})=\frac{2}{3}$,求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.從0,1,2,3中任取2個(gè)不同的數(shù),則取出2個(gè)數(shù)的和不小于3的概率是$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=a(|sinx|+|cosx|)-$\frac{4}{9}$sin2x-1,若f($\frac{π}{4}$)=$\sqrt{2}$-$\frac{13}{9}$.
(1)求a的值,并寫出函數(shù)f(x)的最小正周期(不需證明);
(2)是否存在正整數(shù)k,使得函數(shù)f(x)在區(qū)間[0,kπ]內(nèi)恰有2017個(gè)零點(diǎn)?若存在,求出k的值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知復(fù)數(shù)z1=3-2i,z2=-2+3i.
(1)求z1z2;
(2)若復(fù)數(shù)z滿足$\frac{1}{z}=\frac{1}{z_1}+\frac{1}{z_2}$,求|z|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015-2016學(xué)年江西省南昌市高二理下學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:選擇題

設(shè)函數(shù),其中,,存在使得成立,則實(shí)數(shù)的值為( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案