6.n件不同物品放入m個(gè)抽屜中,不限放法,共有多少種不同放法?請(qǐng)說(shuō)明原理.

分析 每件物品都有m種放法,利用乘法原理,即可得出結(jié)論.

解答 解:按分步原理,每件物品都有m種放法,故共有mn種不同的放法.

點(diǎn)評(píng) 本題考查分步計(jì)數(shù)原理,是一個(gè)基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.等差數(shù)列{an}首項(xiàng)和公差都是$\frac{2}{3}$,記{an}的前n項(xiàng)和為Sn,等比數(shù)列{bn}各項(xiàng)均為正數(shù),公比為q,記{bn}的前n項(xiàng)和為Tn
(I)寫出Si(i=1,2,3,4,5)構(gòu)成的集合A;
(Ⅱ)若將Sn中的整數(shù)項(xiàng)按從小到大的順序構(gòu)成數(shù)列{cn},求{cn}的一個(gè)通項(xiàng)公式;
(Ⅲ)若q為正整數(shù),問(wèn)是否存在大于1的正整數(shù)k,使得Tk,T2k同時(shí)為(1)中集合A的元素?若存在,寫出所有符合條件的{bn}的通項(xiàng)公式,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.一袋中裝有大小相同的6個(gè)黑球,編號(hào)為1,2,3,4,5,6,現(xiàn)從中隨機(jī)取出3個(gè)球,以ξ表示取出的球的最大號(hào)碼,則ξ=6表示的試驗(yàn)結(jié)果是{1,2,6},{1,3,6},{1,4,6},{1,5,6},{2,3,6},{2,4,6},{2,5,6},{3,4,6},{3,5,6},{4,5,6}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.用紅、黃、藍(lán)、綠4種顏色為一個(gè)五棱錐的六個(gè)頂點(diǎn)著色,要求每一條棱的兩個(gè)端點(diǎn)著不同的顏色,則不同的著色方案共有 ( 。┓N?
A.120B.140C.180D.240

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知△ABC的外接圓方程為x2+y2=5,直線AC:y=-1(點(diǎn)A在第四象限),設(shè)AB中點(diǎn)為M,AC中點(diǎn)為N,若|AN|=|MN|,則直線AB的斜率為-$\frac{8}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.方程x2-|x|+a=0有解,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖,四棱錐P-ABCD,AD∥BC,AD=2BC=4,AB=2$\sqrt{3}$,∠BAD=90°,M,O分別為CD和AC的中點(diǎn),PO⊥平面ABCD.
(I)求證:平面PBM⊥平面PAC;
(Ⅱ)是否存在線段PM上一點(diǎn)N,使得ON∥平面PAB,若存在,求$\frac{PN}{PM}$的值,如果不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知等差數(shù)列{an}的公差不為零,其前n項(xiàng)和為Sn,a22=S3,且S1,S2,S4成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)記Tn=a1+a5+a9+…+a4n-3,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.在△ABC中,∠C=90°,AC=2,點(diǎn)M滿足$\overrightarrow{BM}$=$\overrightarrow{MA}$,則$\overrightarrow{CM}$•$\overrightarrow{CA}$=(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案