已知函數(shù)f(x)=alnx+
1
2
ax2+bx(a≠0)
(Ⅰ)若函數(shù)f(x)的圖象在x=1處的切線方程為y=3x-
3
2
,求a,b的值;
(Ⅱ)若a=2時(shí),函數(shù)f(x)是增函數(shù),求實(shí)數(shù)b的取值范圍;
(Ⅲ)設(shè)函數(shù)g(x)=lnx的圖象C1與函數(shù)h(x)=f(x)-ag(x)的圖象C2交于點(diǎn)P、Q,過(guò)線段PQ的中點(diǎn)R作x軸的垂線分別交C1、C2于點(diǎn)M、N,問(wèn)是否存在點(diǎn)R,使C1在M處的切線與C2在N處的切線平行?若存在,求出R的橫坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
考點(diǎn):利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專題:函數(shù)的性質(zhì)及應(yīng)用,導(dǎo)數(shù)的概念及應(yīng)用,導(dǎo)數(shù)的綜合應(yīng)用,直線與圓
分析:(Ⅰ)求出f(x)的導(dǎo)數(shù),求出切線的斜率,切點(diǎn),由已知切線方程,可得a,b的方程,解得即可;
(Ⅱ)求出a=2的導(dǎo)數(shù),由f(x)是增函數(shù),則有f′(x)≥0在x>0恒成立,運(yùn)用參數(shù)分離,運(yùn)用基本不等式求得右邊的最小值,即可得到b的范圍;
(Ⅲ)首先設(shè)點(diǎn)P、Q的坐標(biāo)是(x1,y1),(x2,y2),0<x1<x2,然后通過(guò)導(dǎo)數(shù)公式以及導(dǎo)數(shù)的幾何意義,分別求出曲線C1在點(diǎn)M處的切線斜率k1和曲線C2在點(diǎn)N處的切線斜率k2,因?yàn)閮蓷l切線平行,所以k1=k2,解關(guān)于x1,x2,a,b的方程,整理成ln
x2
x1
=
2(
x2
x1
-1)
x2
x1
+1
.設(shè)t=
x2
x1
,則lnt=
2(t-1)
t+1
①轉(zhuǎn)化為關(guān)于t的函數(shù)討論問(wèn)題,根據(jù)其單調(diào)性得出lnt>
2(t-1)
t+1
.這與①矛盾,因此假設(shè)不成立.可得C1在點(diǎn)M處的切線與C2在點(diǎn)N處的切線不平行.
解答: 解:(Ⅰ)函數(shù)f(x)=alnx+
1
2
ax2+bx的導(dǎo)數(shù)為f′(x)=
a
x
+ax+b,
在x=1處的切線斜率為k=2a+b,f(1)=
1
2
a+b,
在x=1處的切線方程為y=3x-
3
2
,即有2a+b=3,
1
2
a+b=3-
3
2

解得a=b=1;
(Ⅱ)若a=2時(shí),函數(shù)f(x)=2lnx+x2+bx的導(dǎo)數(shù)為f′(x)=
2
x
+2x+b,
由f(x)是增函數(shù),則有f′(x)≥0在x>0恒成立,
即-
b
2
≤x+
1
x
,由于x+
1
x
≥2(當(dāng)且僅當(dāng)x=1取得等號(hào)),
則有-
b
2
≤2,解得b≥-4;
(Ⅲ)設(shè)點(diǎn)P、Q的坐標(biāo)是(x1,y1),(x2,y2),0<x1<x2
則點(diǎn)M,N的橫坐標(biāo)為x=
x1+x2
2

C1點(diǎn)在M處的切線斜率為k1=
2
x1+x2
,
C2點(diǎn)N處的切線斜率為k2=
a(x1+x2)
2
+b,
假設(shè)C1點(diǎn)M處的切線與C2在點(diǎn)N處的切線平行,則k1=k2
2
x1+x2
=
a(x1+x2)
2
+b,
2(x2-x1)
x1+x2
=
a
2
(x22-x12)+b(x2-x1)=(
a
2
x22+bx2)-(
a
2
x12+bx1)=y2-y1=lnx2-lnx1
∴l(xiāng)n
x2
x1
=
2(
x2
x1
-1)
x2
x1
+1

設(shè)t=
x2
x1
,則lnt=
2(t-1)
t+1

令F(t)=lnt-
2(t-1)
t+1

則F′(t)=
1
t
-
4
(t+1)2
=
(t-1)2
t(t+1)2
,
因?yàn)閠>1時(shí),F(xiàn)'(t)>0,
所以F(t)在[1,+∞)上單調(diào)遞增.
故F(t)>F(1)=0
則lnt>
2(t-1)
t+1
.這與①矛盾,假設(shè)不成立.
故C1在點(diǎn)M處的切線與C2在點(diǎn)N處的切線不平行.
點(diǎn)評(píng):本題考查導(dǎo)數(shù)的運(yùn)用:求切線方程和單調(diào)區(qū)間和極值、最值,考查不等式的恒成立問(wèn)題轉(zhuǎn)化為求函數(shù)的最值,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若cos(α+3π)=
1
3
,且α∈(
π
2
,π),則
sin(
π
2
+α)
sin(π+α)+cos(
π
2
+α)
=.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

cos15°sin9°+sin6°
sin15°sin9°-cos6°
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)f(x)=x+
4
x
在x=1處的導(dǎo)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果存在滿足
1
x
+
m
y
=1的變量x,y(x>0,y>0),使得x+y-
x2+y2
最得最大值,則m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)幾何體的三視圖如圖所示,則這個(gè)幾何體的體積為( 。
A、
3
B、
3
3
4
C、
3
2
D、2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知Sn是等差數(shù)列{an}的前n項(xiàng),數(shù)列{bn}是等比數(shù)列,b1=
1
2
,a5-1恰為S4
1
b2
的等比中項(xiàng),圓C:(x-2n)2+(y-
Sn
2=2n2,直線l;x+y=n,對(duì)任意n∈N*,直線l都與圓C相切
(Ⅰ)求數(shù)列{an},{bn}
(Ⅱ)若任意n∈N*,cn=anbn,求{cn}的前n項(xiàng)和Tn的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)幾何體的三視圖如圖所示,如該幾何體的表面積為92cm2,則h的值為( 。
A、4B、5C、6D、7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x)為定義在R上的奇函數(shù),且x>0時(shí),f(x)=lg(x2-ax+10),若函數(shù)y=f(x)的值域?yàn)镽,則實(shí)數(shù)a的取值范圍是(  )
A、(-∞,-2
10
]∪[2
10
,+∞)
B、(-2
10
,2
10
C、(-2
10
,-6]
D、[6,2
10

查看答案和解析>>

同步練習(xí)冊(cè)答案