18.已知f(x)=1+log2x(1≤x≤4),設函數(shù)g(x)=f2(x)+f(x2),則g(x)max-g(x)min=5.

分析 換元t=log2x,求得0≤t≤1,化簡g(x)即為h(t)=t2+4t+2,0≤t≤1,求出對稱軸t=-2,可得h(t)在[0,1]為增函數(shù),計算即可得答案.

解答 解:∵f(x)=1+log2x(1≤x≤4),
∴$\left\{\begin{array}{l}{1≤x≤4}\\{1≤{x}^{2}≤4}\end{array}\right.$,即1≤x≤2,
∵f(x)=1+log2x(1≤x≤4),
g(x)=f2(x)+f(x2)=(1+log2x)2+1+2log2x,
∴g(x)=(log2x)2+4log2x+2,1≤x≤2
設t=log2x,則h(t)=t2+4t+2,0≤t≤1,
∵對稱軸t=-2,h(t)在[0,1]為增函數(shù),
∴g(x)的最小值為h(0)=2,最大值為h(1)=7
則g(x)max-g(x)min=7-2=5.
故答案為:5.

點評 本題考查函數(shù)的最值的求法,注意運用換元法轉化為二次函數(shù)求值域問題,注意自變量的范圍,同時考查對數(shù)函數(shù)的單調性的運用,屬于中檔題和易錯題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

13.已知c>0,設命題p:函數(shù)y=cx為減函數(shù).命題q:?x∈[$\frac{1}{2}$,2],x+$\frac{1}{x}$>c.如果p∨q為真命題,p∧q為假命題,求實數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.定義在R上的奇函數(shù)f(x)和偶函數(shù)g(x)滿足:f(x)+g(x)=ex,給出如下結論:
①f(x)=$\frac{{{e^x}-{e^{-x}}}}{2}$且0<f(1)<g(2);
②?x∈R,總有[g(x)]2-[f(x)]2=1;
③?x∈R,總有f(-x)g(-x)+f(x)g(x)=0;
④?x0∈R,使得f(2x0)>2f(x0)g(x0).
其中所有正確結論的序號是( 。
A.①②③B.②③C.①③④D.①②③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.設向量$\overrightarrow{a}$,$\overrightarrow$的夾角為θ,則“$\overrightarrow{a}$•$\overrightarrow$<0”是“θ為鈍角”的( 。
A.充分不必要條件B.必要不充分
C.充要條件D.既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.用描述法表示圖中陰影部分的點(含邊界)的坐標的集合為{(x,y)|xy>0,且-1≤x≤2,-$\frac{1}{2}$≤y≤1}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知數(shù)列{an}為等差數(shù)列,Sn為前n項和,公差為d,若$\frac{{S}_{2017}}{2017}$-$\frac{{S}_{17}}{17}$=100,則d的值為( 。
A.$\frac{1}{20}$B.$\frac{1}{10}$C.10D.20

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.某人在如圖所示的直角邊長為4米的三角形地塊的每個格點(指縱、橫直線的交叉點以及三角形的頂點)處都種了一株相同品種的作物.根據(jù)歷年的種植經驗,一株該種作物的年收獲量Y(單位:kg)與它的“相近”作物株數(shù)X之間的關系如表所示:
X1234
Y51484542
這里,兩株作物“相近”是指它們之間的直線距離不超過1米.
(1)完成下表,并求所種作物的平均年收獲量:
Y51484542
頻數(shù)    
(2)在所種年收獲量為51或48的作物中隨機選取兩株求收獲量之和,收獲量之和為t的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知數(shù)列{an}的前n項和Sn=n2-4n.
(1)求數(shù)列{an}的通項公式;
(2)求Sn的最大或最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.定義在R上的偶函數(shù)f(x)在(-∞,0]上遞減,f(-3)=0,則滿足f(log2x)>0的x的取值范圍是(0,$\frac{1}{8}$)∪(8,+∞).(要求用區(qū)間表示)

查看答案和解析>>

同步練習冊答案