設(shè)是公比大于1的等比數(shù)列,為數(shù)列的前項(xiàng)和,已知,且構(gòu)成等差數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)令,求數(shù)列的前項(xiàng)和.

(1)(2)

解析試題分析:(1)由已知得,即,結(jié)合解得   ∴           
(2)由(1)得,,∴,∴是以為首項(xiàng),公差的等差數(shù)列,∴
  
考點(diǎn):等比數(shù)列的通項(xiàng)公式;數(shù)列的求和.
點(diǎn)評(píng):解答特殊數(shù)列(等差數(shù)列與等比數(shù)列)的問(wèn)題時(shí),根據(jù)已知條件構(gòu)造關(guān)于基本量的方程,解方程求出基本量,再根據(jù)定義確定數(shù)列的通項(xiàng)公式及前n項(xiàng)和公式,然后代入進(jìn)行運(yùn)算.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)數(shù)列的前項(xiàng)和為,,
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

數(shù)列的前項(xiàng)和為,,,等差數(shù)列滿(mǎn)足
(1)分別求數(shù)列,的通項(xiàng)公式;      
(2)設(shè),求證

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列{an}和{bn}滿(mǎn)足:,其中λ為實(shí)數(shù),n為正整數(shù).
(Ⅰ)若數(shù)列{an}前三項(xiàng)成等差數(shù)列,求的值;
(Ⅱ)試判斷數(shù)列{bn}是否為等比數(shù)列,并證明你的結(jié)論;
(Ⅲ)設(shè)0<a<b,Sn為數(shù)列{bn}的前n項(xiàng)和.是否存在實(shí)數(shù)λ,使得對(duì)任意正整數(shù)n,都有a<Sn<b?若存在,求λ的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分12分)
已知為等比數(shù)列,為等差數(shù)列的前n項(xiàng)和,.
(1) 求的通項(xiàng)公式;
(2) 設(shè),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分12分)
在數(shù)列中,為常數(shù),,且成公比不等于1的等比數(shù)列.
(Ⅰ)求的值;
(Ⅱ)設(shè),求數(shù)列的前項(xiàng)和。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分12分)
已知數(shù)列的前項(xiàng)和為,對(duì)一切正整數(shù),點(diǎn)都在函數(shù)的圖像上.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè),求數(shù)列的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿(mǎn)分14分)
已知數(shù)列滿(mǎn)足,數(shù)列滿(mǎn)足.
(1)求證:數(shù)列是等差數(shù)列;
(2)設(shè),求滿(mǎn)足不等式的所有正整數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿(mǎn)分14分)
已知函數(shù)
的圖象上。
(1)求數(shù)列的通項(xiàng)公式;
(2)令求數(shù)列
(3)令證明:。

查看答案和解析>>

同步練習(xí)冊(cè)答案