分析 (1)求出M(-1,2)到直線y=x+4的距離,利用直線y=x+4被圓M截得的弦長為$\sqrt{2}$,求出半徑,即可求圓M的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn)Q在圓M上,且滿足$\overrightarrow{MP}$=4$\overrightarrow{QM}$,求出P的軌跡方程與直線y=x-1聯(lián)立,即可求點(diǎn)P的坐標(biāo).
解答 解:(1)M(-1,2)到直線y=x+4的距離為d=$\frac{|-1-2+4|}{\sqrt{2}}$=$\frac{\sqrt{2}}{2}$,…(2分)
又直線y=x+4被圓M截得的弦長為$\sqrt{2}$,
所以圓M的半徑為r=1,…(4分)
∴圓M的標(biāo)準(zhǔn)方程為(x+1)2+(y-2)2=1.…(6分)
(2)由$\overrightarrow{MP}$=4$\overrightarrow{QM}$,得|$\overrightarrow{MP}$|=4|$\overrightarrow{QM}$|=4,
所以點(diǎn)P在圓(x+1)2+(y-2)2=16上,…(8分)
又點(diǎn)P在直線y=x-1上,聯(lián)立解得$\left\{\begin{array}{l}{x=-1}\\{y=-2}\end{array}\right.$或$\left\{\begin{array}{l}{x=3}\\{y=2}\end{array}\right.$,
即點(diǎn)P的坐標(biāo)為(-1,-2)或(3,2).…(12分)
點(diǎn)評(píng) 本題考查圓的方程,考查直線與圓的位置關(guān)系,考查學(xué)生的計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{15}+\sqrt{3}}}{8}$ | B. | $\frac{{\sqrt{15}-\sqrt{3}}}{8}$ | C. | $\frac{{-\sqrt{15}+\sqrt{3}}}{8}$ | D. | $\frac{{-\sqrt{15}-\sqrt{3}}}{8}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 沿x軸向左平移$\frac{π}{2}$個(gè)單位,縱坐標(biāo)伸長為原來的2倍 | |
B. | 沿x軸向右平移$\frac{π}{2}$個(gè)單位,縱坐標(biāo)伸長為原來的2倍 | |
C. | 沿x軸向左平移$\frac{π}{4}$個(gè)單位,縱坐標(biāo)伸長為原來的2倍 | |
D. | 沿x軸向右平移$\frac{π}{4}$個(gè)單位,縱坐標(biāo)伸長為原來的2倍 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
原像 | 1 | 2 | 3 | 4 |
像 | 3 | 4 | 2 | 1 |
原像 | 1 | 2 | 3 | 4 |
像 | 4 | 3 | 1 | 2 |
A. | g[f(3)] | B. | g[f(1)] | C. | f[f(4)] | D. | f[f(3)] |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com