9.已知圓M的圓心為M(-1,2),直線y=x+4被圓M截得的弦長為$\sqrt{2}$,點(diǎn)P在直線l:y=x-1上.
(1)求圓M的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn)Q在圓M上,且滿足$\overrightarrow{MP}$=4$\overrightarrow{QM}$,求點(diǎn)P的坐標(biāo).

分析 (1)求出M(-1,2)到直線y=x+4的距離,利用直線y=x+4被圓M截得的弦長為$\sqrt{2}$,求出半徑,即可求圓M的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn)Q在圓M上,且滿足$\overrightarrow{MP}$=4$\overrightarrow{QM}$,求出P的軌跡方程與直線y=x-1聯(lián)立,即可求點(diǎn)P的坐標(biāo).

解答 解:(1)M(-1,2)到直線y=x+4的距離為d=$\frac{|-1-2+4|}{\sqrt{2}}$=$\frac{\sqrt{2}}{2}$,…(2分)
又直線y=x+4被圓M截得的弦長為$\sqrt{2}$,
所以圓M的半徑為r=1,…(4分)
∴圓M的標(biāo)準(zhǔn)方程為(x+1)2+(y-2)2=1.…(6分)
(2)由$\overrightarrow{MP}$=4$\overrightarrow{QM}$,得|$\overrightarrow{MP}$|=4|$\overrightarrow{QM}$|=4,
所以點(diǎn)P在圓(x+1)2+(y-2)2=16上,…(8分)
又點(diǎn)P在直線y=x-1上,聯(lián)立解得$\left\{\begin{array}{l}{x=-1}\\{y=-2}\end{array}\right.$或$\left\{\begin{array}{l}{x=3}\\{y=2}\end{array}\right.$,
即點(diǎn)P的坐標(biāo)為(-1,-2)或(3,2).…(12分)

點(diǎn)評(píng) 本題考查圓的方程,考查直線與圓的位置關(guān)系,考查學(xué)生的計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若sin(θ-$\frac{π}{6}$)=$\frac{1}{4}$,$θ∈({\frac{π}{6},\frac{2π}{3}})$,則$cos({\frac{3π}{2}+θ})$的值為(  )
A.$\frac{{\sqrt{15}+\sqrt{3}}}{8}$B.$\frac{{\sqrt{15}-\sqrt{3}}}{8}$C.$\frac{{-\sqrt{15}+\sqrt{3}}}{8}$D.$\frac{{-\sqrt{15}-\sqrt{3}}}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=lnx+$\frac{a}{x}$-1,a∈R.
(I)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線與直線x-y+1=0垂直,求函數(shù)的極值;
(II)設(shè)函數(shù)g(x)=x+$\frac{1}{x}$.當(dāng)a=-1時(shí),若區(qū)間[1,e]上存在x0,使得g(x0)<m[f(x0)+1],求實(shí)數(shù) m 的取值范圍.(e為自然對數(shù)底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.函數(shù)的$f(x)={2^{{x^2}+x-3}}$單調(diào)增區(qū)間是(-$\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.給出下列說法:
①冪函數(shù)的圖象一定不過第四象限;
②奇函數(shù)圖象一定過坐標(biāo)原點(diǎn);
③已知函數(shù)y=f(x+1)的定義域?yàn)閇1,2],則函數(shù)y=f(2x)的定義域?yàn)閇2,3];
④定義在R上的函數(shù)f(x)對任意兩個(gè)不等實(shí)數(shù)a、b,總有$\frac{f(a)-f(b)}{a-b}>0$成立,則f(x)在R上是增函數(shù);
⑤$f(x)=\frac{1}{x}$的單調(diào)減區(qū)間是(-∞,0)∪(0,+∞);
正確的有①④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)f(x)=sin(2x+φ)(0<φ<$\frac{π}{2}$)的一個(gè)對稱中心為($\frac{π}{3}$,0),則要得到函數(shù)y=f′(x)的圖象,只需把函數(shù)f(x)的圖象( 。
A.沿x軸向左平移$\frac{π}{2}$個(gè)單位,縱坐標(biāo)伸長為原來的2倍
B.沿x軸向右平移$\frac{π}{2}$個(gè)單位,縱坐標(biāo)伸長為原來的2倍
C.沿x軸向左平移$\frac{π}{4}$個(gè)單位,縱坐標(biāo)伸長為原來的2倍
D.沿x軸向右平移$\frac{π}{4}$個(gè)單位,縱坐標(biāo)伸長為原來的2倍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.拋物線y=x2在點(diǎn)P處的切線平行于直線y=4x-5,則點(diǎn)P的坐標(biāo)為(2,4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.畫出下列函數(shù)f(x)的圖象并根據(jù)函數(shù)圖象寫出函數(shù)f(x)的單調(diào)區(qū)間.
(1)$f(x)=\left\{{\begin{array}{l}{3x+4,-1≤x≤0}\\{{x^2}-2x+4,x>0}\end{array}}\right.$
(2)f(x)=|x+2|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)f,g都是由A到A的映射,其對應(yīng)法則如表所示(從上到下),則與f[g(1)]相同的是( 。
表1  映射f的對應(yīng)法則
原像1234
3421
表2  映射g的對應(yīng)法則
原像1234
4312
A.g[f(3)]B.g[f(1)]C.f[f(4)]D.f[f(3)]

查看答案和解析>>

同步練習(xí)冊答案