19.已知2sin2α+sinαcosα-3cos2α=$\frac{7}{5}$,tanα的值是2或-$\frac{11}{3}$.

分析 由條件利用同角三角函數(shù)的基本關系,求得tanα的值.

解答 解:∵2sin2α+sinαcosα-3cos2α=$\frac{7}{5}$,
∴$\frac{{2sin}^{2}α+sinαcosα-{3cos}^{2}α}{{sin}^{2}α{+cos}^{2}α}$=$\frac{{2tan}^{2}α+tanα-3}{{tan}^{2}α+1}$=$\frac{7}{5}$,
∴tanα=2 或tanα=-$\frac{11}{3}$,
故答案為:2 或-$\frac{11}{3}$,

點評 本題主要考查同角三角函數(shù)的基本關系,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

9.已知|$\overrightarrow{a}$|=|$\overrightarrow$|=6,向量$\overrightarrow{a}$與$\overrightarrow$的夾角為$\frac{π}{3}$.
(1)求|$\overrightarrow{a}$+$\overrightarrow$|,|$\overrightarrow{a}$-$\overrightarrow$|;
(2)求$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-$\overrightarrow$的夾角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知△AOB內(nèi)接于拋物線y2=4x,焦點F是△AOB的垂心,則點A,B的坐標A(5,2$\sqrt{5}$),B(5,-2$\sqrt{5}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知矩陣M=$[\begin{array}{l}{1}&{0}\\{0}&{2}\end{array}]$,N=$[\begin{array}{l}{\frac{1}{2}}&{0}\\{0}&{1}\end{array}]$,試求曲線y=sinx在矩陣(MN)-1變換下的函數(shù)解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知{an}是遞增的等差數(shù)列,a2,a4是方程x2-5x+6=0的根.
(Ⅰ)求{an}的通項公式;
(Ⅱ)若bn=2n•an,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.拋物線y2=$\frac{1}{4}$x的焦點到準線的距離為( 。
A.1B.$\frac{1}{16}$C.$\frac{1}{2}$D.$\frac{1}{8}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.將曲線x2+y2=4按伸縮變換公式$\left\{\begin{array}{l}{x′=2x}\\{y′=3y}\end{array}\right.$變換后得到曲線C,求曲線C的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知角α在第三象限,且sinα=-$\frac{12}{13}$,則tanα=( 。
A.$-\frac{12}{5}$B.$\frac{12}{5}$C.$\frac{5}{12}$D.$-\frac{5}{12}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知復數(shù)z=$\frac{(3+4i)^{2}}{5i}$(i為虛數(shù)單位),則|z|的值是5.

查看答案和解析>>

同步練習冊答案