6.已知直線a、b和平面α,下列說法中正確的有⑦.
①若a∥α,b∥α,則a∥b;            
②若a∥b,b∥α,則a∥α;
③若a∥α,b?α,則a∥b;
④若直線a∥b,直線b?α,則a∥α;
⑤若直線a在平面α外,則a∥α;
⑥直線a平行于平面α內(nèi)的無數(shù)條直線,則a∥α;
⑦若直線a∥b,b?α,那么直線a就平行于平面α內(nèi)的無數(shù)條直線.

分析 根據(jù)空間直線與直線,直線與平面位置關系的幾何特征,逐一分析7個結論的真假,可得答案.

解答 解:①若a∥α,b∥α,則a與b可能平行,可能異面,可能相交,故錯誤;            
②若a∥b,b∥α,則a∥α或a?α,故錯誤;
③若a∥α,b?α,則a∥b或a與b異面,故錯誤;
④若直線a∥b,直線b?α,則a∥α或a?α,故錯誤;
⑤若直線a在平面α外,則a∥α或a與α相交,故錯誤;
⑥直線a平行于平面α內(nèi)的無數(shù)條直線,則a∥α或a?α,故錯誤;
⑦若直線a∥b,b?α,那么直線a就平行于平面α內(nèi)的無數(shù)條直線,正確.
故答案為:⑦.

點評 本題以命題的真假判斷與應用為載體,考查了空間直線與直線的位置關系,直線與平面的位置關系等知識點,難度中檔.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

16.如圖,在正方體ABCD-A1B1C1D1中,AB=2,過直線B1D1的平面α⊥平面A1BD,則平面α截該正方體所得截面的面積為$\sqrt{6}$ .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.在實數(shù)的原有運算法則中,我們補充定義新運算“⊕”如下:當a≥b時,a⊕b=a;當a<b時,a⊕b=b.則函數(shù)f(x)=(1⊕x)•x-(2⊕x)(x∈[-2,2])的最大值等于(“•”和“-”仍為通常的乘法和減法)( 。
A.-1B.1C.2D.12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.設實數(shù)在區(qū)間[-1,1]內(nèi)任取兩個數(shù),則這兩個數(shù)的平方和小于1的概率是( 。
A.$\frac{3}{8}$B.$\frac{1}{8}$C.$\frac{π}{2}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知橢圓的中心在坐標原點O,焦點在x軸上,橢圓短軸的兩個端點和兩個焦點所組成的四邊形為正方形,且橢圓過點(-1,$\frac{\sqrt{2}}{2}$).
(1)求橢圓的方程;
(2)直線l過點P(0,2)且與橢圓相交于A、B兩點,當△AOB面積取得最大值時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知集合M={x|x=k+$\frac{1}{2}$,k∈Z},N={x|x=$\frac{k}{2}$+1,k∈Z},若x0∈M,則x0與N的關系是( 。
A.x0∈NB.x0∉NC.x0∈N或x0∉ND.不能確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知集合A={y|y=-x2-2x},B={x|y=x+1},則A∩B=(-∞,1].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.給出下列命題,其中正確命題的序號是②③⑤
①存在實數(shù)α,使sinα•cosα=1;
②函數(shù)$y=sin(\frac{3}{2}π+x)$是偶函數(shù);
③直線$x=\frac{π}{8}$是函數(shù)$y=sin(2x+\frac{5}{4}π)$的一條對稱軸;
④若α、β是第一象限的角,且α>β,則sinα>sinβ;
⑤函數(shù)$y=2sin(\frac{π}{3}-x)-cos(\frac{π}{6}+x)(x∈R)$的最小值等于-1;
⑥函數(shù)$y=|{tan(2x+\frac{π}{3})}|$的周期為π.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知圓O的半徑為3,圓O的一條弦AB長為4,點P為圓上一點,則$\overrightarrow{AB}•\overrightarrow{AP}$的最大值為( 。
A.16B.20C.24D.18

查看答案和解析>>

同步練習冊答案