分析 由題意畫出圖形,求出A,B的坐標(biāo),設(shè)出P的坐標(biāo),寫出AP,BP所在直線方程,求出M,N的坐標(biāo),由$\overrightarrow{FM}•\overrightarrow{FN}=0$可得∠MFN=90°.
解答 解:如圖A(-a,0),B(a,0),設(shè)P(x0,y0),
則${k}_{PA}=\frac{{y}_{0}}{{x}_{0}+a}$,直線PA:$y=\frac{{y}_{0}}{{x}_{0}+a}(x+a)$,
∴M($\frac{{a}^{2}}{c},\frac{a{y}_{0}(a+c)}{c({x}_{0}+a)}$),
${k}_{PB}=\frac{{y}_{0}}{{x}_{0}-a}$,直線PB:$y=\frac{{y}_{0}}{{x}_{0}-a}(x-a)$,
∴N($\frac{{a}^{2}}{c},\frac{a{y}_{0}(a-c)}{c({x}_{0}-a)}$).
則$\overrightarrow{FM}=(\frac{a{y}_{0}(a+c)}{c({x}_{0}+a)},\frac{^{2}}{c})$,$\overrightarrow{FN}=(\frac{a{y}_{0}(a-c)}{c({x}_{0}-a)},\frac{^{2}}{c})$,
∵$\overrightarrow{FM}•\overrightarrow{FN}=\frac{{a}^{2}{{y}_{0}}^{2}^{2}}{{c}^{2}({{x}_{0}}^{2}-{a}^{2})}+\frac{^{4}}{{c}^{2}}$=$\frac{{a}^{2}^{2}}{{c}^{2}}(-\frac{^{2}}{{a}^{2}})+\frac{^{4}}{{c}^{2}}=0$.
∴$\overrightarrow{FM}⊥\overrightarrow{FN}$,即∠MFN=90°.
故答案為:90°.
點(diǎn)評(píng) 本題考查了直線與圓錐曲線的關(guān)系,考查了數(shù)形結(jié)合的解題思想方法與數(shù)學(xué)轉(zhuǎn)化思想方法,考查了學(xué)生綜合處理問題解決問題的能力,考查了學(xué)生的運(yùn)算能力,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
支持推遲退休 | 不支持推遲退休 | 合計(jì) | |
年齡不大于45歲 | 20 | 60 | 80 |
年齡大于45歲 | 10 | 10 | 20 |
合計(jì) | 30 | 70 | 100 |
P(K2>k) | 0.100 | 0.050 | 0.025 | 0.010 |
k | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com