5.已知數(shù)列{an}滿足an≠0,a1=$\frac{1}{3}$,an-1-an=2an-1•an(n≥2,n∈N*),則an=$\frac{1}{2n+1}$;a1a2+a2a3+…+anan+1=$\frac{n}{6n+9}$.

分析 通過對an-1-an=2an-1•an(n≥2,n∈N*)變形可知$\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{n-1}}$=2,進而可知數(shù)列{$\frac{1}{{a}_{n}}$}是首項為3、公差為2的等差數(shù)列,從而可知an=$\frac{1}{2n+1}$,進而裂項可知anan+1=$\frac{1}{2}$($\frac{1}{2n+1}$-$\frac{1}{2n+3}$),并項相加即得結(jié)論.

解答 解:∵an-1-an=2an-1•an(n≥2,n∈N*),
∴$\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{n-1}}$=2,
又∵$\frac{1}{{a}_{1}}$=3,
∴數(shù)列{$\frac{1}{{a}_{n}}$}是首項為3、公差為2的等差數(shù)列,
∴$\frac{1}{{a}_{n}}$=3+2(n-1)=2n+1,an=$\frac{1}{2n+1}$,
又∵anan+1=$\frac{1}{(2n+1)(2n+3)}$=$\frac{1}{2}$($\frac{1}{2n+1}$-$\frac{1}{2n+3}$),
∴a1a2+a2a3+…+anan+1=$\frac{1}{2}$($\frac{1}{3}$-$\frac{1}{5}$+$\frac{1}{5}$-$\frac{1}{7}$+…+$\frac{1}{2n+1}$-$\frac{1}{2n+3}$)
=$\frac{1}{2}$($\frac{1}{3}$-$\frac{1}{2n+3}$)
=$\frac{n}{6n+9}$,
故答案為:$\frac{1}{2n+1}$,$\frac{n}{6n+9}$.

點評 本題考查數(shù)列的通項及前n項和,考查運算求解能力,考查裂項相消法,注意解題方法的積累,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

2.定義A°B={x|x∈A或x∈B,但x∉A∩B}.已知M={y|y=2|x|},N={x|$\frac{3}{2-x}$≤2},則M°N=(  )
A.[0,1)∪(2,+∞)B.(-∞,$\frac{1}{2}$]∪[1,2]C.[$\frac{1}{2}$,1)∪(2,+∞)D.[1,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知過拋物線y2=4x的焦點F作直線l交拋物線于A,B兩點,若$\overrightarrow{BF}$=2$\overrightarrow{FA}$,則點A的橫坐標為( 。
A.$\frac{2}{3}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.若log2$\root{3}{9}$=a與log2$\sqrt{5}$=b,則log2$\frac{120}{\root{3}{25}}$用a、b可表示為$\frac{3}{2}a$+$\frac{2}{3}$b+3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知數(shù)列{an}滿足a1=$\frac{7}{8}$,且an+1=$\frac{1}{2}$an$+\frac{1}{3}$,n∈N*,求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.在等比數(shù)列{an}中,a1•a2•a3=27,a2•a4=81
(1)求a1和公比q;
(2)若{an}各項均為正數(shù),求數(shù)列{n•an}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.設(shè)函數(shù)f(x)=x+$\frac{1}{x-b}$+c(b<-1,c∈R),函數(shù)g(x)=|f(x)|在區(qū)間[-1,1]上的最大值為M.
(1)若b=-2,求M的值;
(2)若M≥k對任意的b,c恒成立,求k的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.函數(shù)y=sinx(cosx-$\sqrt{3}$sinx)(0≤x≤$\frac{π}{2}$)的值域為( 。
A.[$\sqrt{3}$,1+$\frac{\sqrt{3}}{2}$]B.[-$\frac{\sqrt{3}}{2}$,1-$\frac{\sqrt{3}}{2}$]C.[0,1]D.[-$\sqrt{3}$,1-$\frac{\sqrt{3}}{2}$]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.如圖,四棱錐P-ABCD中,底面ABCD是矩形,PA⊥底面ABCD,PA=AB=1,AD=$\sqrt{3}$,點F是PB的中點,點E在邊BC上移動.
(1)當點E為BC的中點時,試判斷EF與平面PAC的位置關(guān)系,并說明理由;
(2)證明:無論點E在BC邊的何處,都有PE⊥AF;
(3)求三棱錐P-AEF體積的最大值.

查看答案和解析>>

同步練習冊答案