【題目】如圖所示,三棱柱的側(cè)面是圓柱的軸截面,C是圓柱底面圓周上不與A、B重合的一個點(diǎn)。
(1)若圓柱的軸截面是正方形,當(dāng)點(diǎn)C是弧AB的中點(diǎn)時,求異面直線與AB的所成角的大小(結(jié)果用反三角函數(shù)值表示);
(2)當(dāng)點(diǎn)C是弧AB的中點(diǎn)時,求四棱錐體積與圓柱體積的比.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(I)當(dāng)時,求過點(diǎn)(0,1)且和曲線相切的直線方程;
(2)若函數(shù)在上有兩個不同的零點(diǎn),求實(shí)致的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列的前項(xiàng)的和為,公差,若,,成等比數(shù)列,;數(shù)列滿足:對于任意的,等式都成立.
(1)求數(shù)列的通項(xiàng)公式;
(2)證明:數(shù)列是等比數(shù)列;
(3)若數(shù)列滿足,試問是否存在正整數(shù),(其中),使,,成等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線過點(diǎn),圓:,直線與圓交于兩點(diǎn).
() 求直線的方程;
()求直線的斜率的取值范圍;
(Ⅲ)是否存在過點(diǎn)且垂直平分弦的直線?若存在,求直線斜率的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,四邊形是菱形, ,平面平面
在棱上運(yùn)動.
(1)當(dāng)在何處時, 平面;
(2)已知為的中點(diǎn), 與交于點(diǎn),當(dāng)平面時,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國數(shù)學(xué)家陳景潤在哥德巴赫猜想的研究中取得了世界領(lǐng)先的成果.哥德巴赫猜想是“每個大于的偶數(shù)可以表示為兩個素?cái)?shù)的和”,如.現(xiàn)從不超過的素?cái)?shù)中,隨機(jī)選取兩個不同的數(shù)(兩個數(shù)無序).(注:不超過的素?cái)?shù)有,,,,,)
(1)列舉出滿足條件的所有基本事件;
(2)求“選取的兩個數(shù)之和等于”事件發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知圓:,點(diǎn)是圓內(nèi)一個定點(diǎn),點(diǎn)是圓上任意一點(diǎn),線段的垂直平分線和半徑相交于點(diǎn).當(dāng)點(diǎn)在圓上運(yùn)動時,點(diǎn)的軌跡為曲線.
(1)求曲線的方程;
(2)設(shè)過點(diǎn)的直線與曲線相交于兩點(diǎn)(點(diǎn)在兩點(diǎn)之間).是否存在直線使得?若存在,求直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)當(dāng)時,求曲線在點(diǎn)處的切線方程;
(2)求函數(shù)f(x)的極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列判斷正確的是( )
A.“”是“”的充分不必要條件
B.函數(shù)的最小值為2
C.當(dāng)時,命題“若,則”為真命題
D.命題“,”的否定是“,”
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com