9.查某市出租車使用年限和該年支出維修費(fèi)用(萬元),得到數(shù)據(jù)如表:
使用年限23456
維修費(fèi)用2.23.85.56.57.0
(1)求線性回歸方程(結(jié)果保留兩位小數(shù));
(2)假設(shè)每輛出租車每年的毛獲利額為14萬元,并且每名出租車司機(jī)的年收益額不低于4萬元.根據(jù)線性回歸分析,計(jì)算該出租車報(bào)廢年限.(結(jié)果保留整數(shù))
參考公式:$\left\{\begin{array}{l}{b=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}}\\{a=\overline{y}-b\overline{x}}\end{array}\right.$.

分析 (1)根據(jù)所給的數(shù)據(jù),做出變量x,y的平均數(shù),求出回歸系數(shù),即可求線性回歸方程;
(3)根據(jù)條件,建立不等式,即可得出結(jié)論.

解答 解:(1)由題意知$\overline{x}$=$\frac{1}{5}$(2+3+4+5+6)=4,$\overline{y}$=$\frac{1}{5}$(2.2+2.8+5.5+6.5+7.0)=5,
$\sum_{i=1}^{5}$xiyi=112.3,$\sum_{i=1}^{5}$${{x}_{i}}^{2}$=90,
∴$\stackrel{∧}$=$\frac{112.3-5×4×5}{90-5×{4}^{2}}$=1.23,$\stackrel{∧}{a}$=5-1.23×4=0.08
∴線性回歸方程為$\stackrel{∧}{y}$=1.23x+0.08
(2)14-1.23x-0.08≥4⇒x≤8.065即報(bào)廢年限為8年.

點(diǎn)評(píng) 本題考查線性回歸方程的求解和應(yīng)用,是一個(gè)基礎(chǔ)題,解題的關(guān)鍵是正確應(yīng)用最小二乘法來求線性回歸方程的系數(shù).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知復(fù)數(shù)z=$\frac{2+i}{1-2i}$,則z的共軛復(fù)數(shù)$\overline z$=(  )
A.1B.-1C.iD.-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.某校為了了解學(xué)生近視的情況,對(duì)四個(gè)非畢業(yè)年級(jí)各班的近視學(xué)生人數(shù)做了統(tǒng)計(jì),每個(gè)年級(jí)都有7個(gè)班.如果某個(gè)年級(jí)的每個(gè)班的近視人數(shù)都不超過5人,則認(rèn)定該年級(jí)為“學(xué)生視力保護(hù)達(dá)標(biāo)年級(jí)”.這四個(gè)年級(jí)各班近視學(xué)生人數(shù)情況統(tǒng)計(jì)如表:
初一年級(jí)平均值為2,方差為2
初二年級(jí)平均值為1,方差大于0
高一年級(jí)中位數(shù)為3,眾數(shù)為4
高二年級(jí)平均值為3,中位數(shù)為4
從表中數(shù)據(jù)可知:一定是“學(xué)生視力保護(hù)達(dá)標(biāo)年級(jí)”的是( 。
A.初一年級(jí)B.初二年級(jí)C.高一年級(jí)D.高二年級(jí)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在△ABC中,a,b,c是角A,B,C的對(duì)邊,已知bcosC+$\sqrt{3}$bsinC-a-c=0,則角B=(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{2}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在復(fù)平面內(nèi),復(fù)數(shù)$\frac{3i-1}{1+3i}$對(duì)應(yīng)的點(diǎn)的坐標(biāo)為( 。
A.($\frac{4}{5}$,$\frac{3}{5}$)B.(-1,$\frac{3}{5}$)C.($\frac{3}{5}$,$\frac{4}{5}$)D.($\frac{3}{5}$,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.(1)設(shè)不等式(x-a)(x+a-2)<0的解集為N,$M=\left\{{m|-\frac{1}{4}≤m<2}\right\}$,若x∈N是x∈M的必要條件,求a的取值范圍.
(2)已知命題:“?x∈{x|-1<x<1},使等式x2-x-m=0成立”是真命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.把正整數(shù)按一定的規(guī)則排成了如圖所示的三角形數(shù)表,設(shè)aij(i,j∈N*)是位于這個(gè)三角形數(shù)表中從上往下數(shù)第i行,從左往右數(shù)第j個(gè)數(shù),如a42=8,若aij=2015,則i+j=110?.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知定義在R上的偶函數(shù)f(x)滿足:當(dāng)x≥0時(shí),f(x)=x3-8,則關(guān)于x的不等式f(x-2)>0的解集為{x|x<0或x>4}.

查看答案和解析>>

同步練習(xí)冊(cè)答案