17.在△ABC中,a,b,c是角A,B,C的對(duì)邊,已知bcosC+$\sqrt{3}$bsinC-a-c=0,則角B=( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{2}$D.$\frac{2π}{3}$

分析 bcosC+$\sqrt{3}$bsinC-a-c=0,利用正弦定理化簡(jiǎn)得:sinBcosC+$\sqrt{3}$sinBsinC-sinA-sinC=0,再利用和差公式、誘導(dǎo)公式、三角形內(nèi)角和定理化簡(jiǎn)可得:$\sqrt{3}$sinB=cosB+1,進(jìn)而得出.

解答 解:在△ABC中,∵bcosC+$\sqrt{3}$bsinC-a-c=0,
利用正弦定理化簡(jiǎn)得:sinBcosC+$\sqrt{3}$sinBsinC-sinA-sinC=0,
即sinBcosC+$\sqrt{3}$sinBsinC=sinA+sinC=sin(B+C)+sinC=sinBcosC+cosBsinC+sinC=sinBcosC+sinC(cosB+1),
∴$\sqrt{3}$sinB=cosB+1,即sin(B-$\frac{π}{6}$)=$\frac{1}{2}$,
∵0<B<π,∴$(B-\frac{π}{6})$∈$(-\frac{π}{6},\frac{5π}{6})$,
∴B-$\frac{π}{6}$=$\frac{π}{6}$,即B=$\frac{π}{3}$.
故選:B.

點(diǎn)評(píng) 本題考查了正弦定理、和差公式、和差公式、誘導(dǎo)公式、三角形內(nèi)角和定理,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.在直角坐標(biāo)系xOy中,全集U={(x,y)|x,y∈R},集合A={(x,y)|xcosθ+(y-4)sinθ=1,0≤θ≤2π},已知集合A的補(bǔ)集∁UA所對(duì)應(yīng)區(qū)域的對(duì)稱中心為M,點(diǎn)P是線段x+y=8(x>0,y>0)上的動(dòng)點(diǎn),點(diǎn)Q是x軸上的動(dòng)點(diǎn),則△MPQ周長(zhǎng)的最小值為(  )
A.24B.4$\sqrt{10}$C.14D.8+4$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知橢圓$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1,過(guò)右焦點(diǎn)F作不垂直于x軸的弦交橢圓于A,B兩點(diǎn),AB的垂直平分線交x軸于N,則|NF|:|AB|等于(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{1}{4}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖,某城市小區(qū)有一個(gè)矩形休閑廣場(chǎng),AB=20米,廣場(chǎng)的一角是半徑為16米的扇形BCE綠化區(qū)域,為了使小區(qū)居民能夠更好的在廣場(chǎng)休閑放松,現(xiàn)決定在廣場(chǎng)上安置兩排休閑椅,其中一排是穿越廣場(chǎng)的雙人靠背直排椅MN(寬度不計(jì)),點(diǎn)M在線段AD上,并且與曲線CE相切;另一排為單人弧形椅沿曲線CN(寬度不計(jì))擺放.已知雙人靠背直排椅的造價(jià)每米為2a元,單人弧形椅的造價(jià)每米為a元,記銳角∠NBE=θ,總造價(jià)為W元.
(1)試將W表示為θ的函數(shù)W(θ),并寫(xiě)出cosθ的取值范圍;
(2)如何選取點(diǎn)M的位置,能使總造價(jià)W最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.銳角三角形ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若B=2A,則$\frac{{\sqrt{2}b}}{a}$的取值范圍是( 。
A.$(\sqrt{2},2)$B.$(2,\sqrt{6})$C.$(\sqrt{2},\sqrt{3})$D.$(\sqrt{6},4)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知一個(gè)幾何體的三視圖如圖所示,其中正視圖和側(cè)視圖都是底邊長(zhǎng)為6,腰長(zhǎng)為10的等腰三角形,俯視圖是半徑為3的圓,則這個(gè)幾何體的表面積是(  )
A.69πB.24πC.30πD.39π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.查某市出租車使用年限和該年支出維修費(fèi)用(萬(wàn)元),得到數(shù)據(jù)如表:
使用年限23456
維修費(fèi)用2.23.85.56.57.0
(1)求線性回歸方程(結(jié)果保留兩位小數(shù));
(2)假設(shè)每輛出租車每年的毛獲利額為14萬(wàn)元,并且每名出租車司機(jī)的年收益額不低于4萬(wàn)元.根據(jù)線性回歸分析,計(jì)算該出租車報(bào)廢年限.(結(jié)果保留整數(shù))
參考公式:$\left\{\begin{array}{l}{b=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}}\\{a=\overline{y}-b\overline{x}}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖,在四棱柱ABCD-A1B1C1D1中,D1D⊥底面ABCD,底面ABCD是正方形,
(1)若E為DD1的中點(diǎn),證明:BD1∥面EAC
(2)求證:AC⊥平面BB1D1D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.960°的終邊在第三象限.(填漢字)

查看答案和解析>>

同步練習(xí)冊(cè)答案