分析 (I)使用三角形的內(nèi)角和公式和二倍角公式化簡式子,得出關(guān)于cosC的方程;
(II)根據(jù)正弦定理得出a-b=sinA-sinB,消去B,得到關(guān)于A的三角函數(shù),利用正弦函數(shù)的性質(zhì)和A的范圍求出.
解答 解:(Ⅰ)在△ABC中,A+B+C=π,
∴sin2$\frac{A+B}{2}$=$\frac{1-cos(A+B)}{2}$=$\frac{1+cosC}{2}$.
∵4sin2$\frac{A+B}{2}-cos2C=\frac{7}{2}$,
∴2(1+cosC)-(2cos2C-1)=$\frac{7}{2}$,即4cos2C-4cosC+1=0,
解得cosC=$\frac{1}{2}$.
∵C∈(0,π),∴C=$\frac{π}{3}$.
(Ⅱ)由正弦定理:$\frac{a}{sinA}=\frac{sinB}=\frac{c}{sinC}=1$,
∵a-b=sinA-sinB=sinA-sin($\frac{2π}{3}-A$)=$\frac{1}{2}$sinA-$\frac{\sqrt{3}}{2}$cosA=sin(A-$\frac{π}{3}$).
∵A∈(0,$\frac{2π}{3}$),∴A-$\frac{π}{3}$∈(-$\frac{π}{3}$,$\frac{π}{3}$).
∴sin(A-$\frac{π}{3}$)<sin$\frac{π}{3}$=$\frac{\sqrt{3}}{2}$,
sin(A-$\frac{π}{3}$)>sin(-$\frac{π}{3}$)=-$\frac{\sqrt{3}}{2}$.
∴a-b的取值范圍是(-$\frac{\sqrt{3}}{2}$,$\frac{\sqrt{3}}{2}$).
點(diǎn)評 本題考查了三角函數(shù)的恒等變換,正弦定理,正弦函數(shù)的圖象與性質(zhì),屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a+b+$\frac{1}{\sqrt{ab}}$>2$\sqrt{2}$ | B. | (a+b)($\frac{1}{a}$+$\frac{1}$)>4 | ||
C. | $\frac{{a}^{2}+^{2}}{\sqrt{ab}}$>ab | D. | $\frac{2ab}{a+b}$>$\sqrt{ab}$ | ||
E. | a+b+$\frac{1}{\sqrt{ab}}$>2$\sqrt{2}$ | F. | $\frac{{a}^{2}+^{2}}{\sqrt{ab}}$≥$\frac{2ab}{\sqrt{ab}}$=$2\sqrt{ab}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-$\frac{5}{3}$,+∞) | B. | ($\frac{4}{3}$,+∞) | C. | (-∞,-$\frac{1}{3}$)∪($\frac{4}{3}$,+∞) | D. | (-$\frac{1}{3}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (3,6] | B. | (3,6) | C. | [3,7] | D. | (3,7] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{2}}{9}$ | B. | $\frac{2\sqrt{2}}{9}$ | C. | $\frac{\sqrt{2}}{3}$ | D. | $\frac{4\sqrt{2}}{9}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com