分析 利用矩陣的乘法求出P,利用△POA的面積為$\sqrt{3}$(O為坐標(biāo)原點(diǎn)),∠POA=60°,b>0,求出a,b,即可寫出M的逆矩陣.
解答 解:由題意,得$[\begin{array}{l}{a}&{1}\\&{0}\end{array}][\begin{array}{l}{1}\\{0}\end{array}]=[\begin{array}{l}{a}\\\end{array}]$,所以點(diǎn)P的坐標(biāo)為P(a,b).
因?yàn)椤鱌OA的面積為$\sqrt{3}$(O為坐標(biāo)原點(diǎn)),∠POA=60°,b>0,
所以b=$\sqrt{3}$a,①$\frac{1}{2}$×1×$\sqrt{{a}^{2}+^{2}}$×sin60°=$\sqrt{3}$,②
解得a=2,b=2$\sqrt{3}$.…(6分)
所以M=$[\begin{array}{l}{2}&{1}\\{\sqrt{3}}&{0}\end{array}]$.
因?yàn)閨M|=-$\sqrt{3}$
所以M=$[\begin{array}{l}{2}&{1}\\{\sqrt{3}}&{0}\end{array}]$的逆矩陣為$[\begin{array}{l}{0}&{\frac{1}{2\sqrt{3}}}\\{1}&{-\frac{1}{\sqrt{3}}}\end{array}]$.
點(diǎn)評 本題考查矩陣的乘法,考查逆矩陣,考查學(xué)生的計(jì)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1+i | B. | -1-i | C. | i | D. | -i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | b<a<c | B. | a<b<c | C. | c<a<b | D. | c<b<a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①② | B. | ②③ | C. | ①②③ | D. | ①③④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 13 | B. | 8 | C. | 2$\sqrt{7}$ | D. | 2$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\frac{1}{2}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{8}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {2,4} | B. | {2,5,8} | C. | {2,4,5,6,8} | D. | {4,6} |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com