2.在平面直角坐標(biāo)系xOy中,直線l過(guò)點(diǎn)M(1,2),傾斜角為$\frac{π}{3}$﹒以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,圓C:ρ=6cosθ﹒若直線l與圓C相交于A,B兩點(diǎn),求MA•MB的值.

分析 直線l的參數(shù)方程為$\left\{\begin{array}{l}x=1+\frac{1}{2}t\;\\ y=2+\frac{{\sqrt{3}}}{2}t\;\end{array}\right.(t$為參數(shù)),圓C:ρ=6cosθ,即ρ2=6ρcosθ,把ρ2=x2+y2,x=ρcosθ,代入可得直角坐標(biāo)方程﹒直線l的參數(shù)方程代入圓C的普通方程,利用根與系數(shù)的關(guān)系、參數(shù)的意義即可得出.

解答 解:直線l的參數(shù)方程為$\left\{\begin{array}{l}x=1+\frac{1}{2}t\;\\ y=2+\frac{{\sqrt{3}}}{2}t\;\end{array}\right.(t$為參數(shù)),
圓C:ρ=6cosθ,即ρ2=6ρcosθ,把ρ2=x2+y2,x=ρcosθ,代入可得直角坐標(biāo)方程為:(x-3)2+y2=9﹒
直線l的參數(shù)方程代入圓C的普通方程,得${t^2}+2(\sqrt{3}-1)t-1=0$,
設(shè)該方程兩根為t1,t2,則t1•t2=-1﹒
∴MA•MB=|t1•t2|=1.

點(diǎn)評(píng) 本題考查了極坐標(biāo)化為直角坐標(biāo)方程、參數(shù)方程的應(yīng)用,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.在平面直角坐標(biāo)系xOy中,曲線C:$\left\{\begin{array}{l}{x=\sqrt{6}cosα}\\{y=\sqrt{2}sinα}\end{array}\right.$(α為參數(shù)).以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸,建立坐標(biāo)系,直線l的極坐標(biāo)方程為ρ(cosθ+$\sqrt{3}$sinθ)+4=0,求曲線C上的點(diǎn)到直線l的最大距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖:已知⊙O是△ABC的外接圓,AB=BC,AH是BC邊上的高,延長(zhǎng)交⊙O于點(diǎn)D,AE是⊙O的直徑.
(1)求證:AE•BH=BD•AB;
(2)過(guò)點(diǎn)C作⊙O的切線,交BA延長(zhǎng)線于點(diǎn)F,若AF=2,CF=4,求AC的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖,在六面體ABCDEFG中,△ABC是邊長(zhǎng)為4正三角形,AE∥CD,AE⊥平面ABC,AE⊥平面DEFG,AE=CD=3,DG=EF=2.
(1)求該六面體的體積;
(2)求平面ACDE與平面BFG所成的銳二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.在直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知圓C的極坐標(biāo)方程為ρ=4sinθ.從極點(diǎn)作圓C的弦,記各條弦中點(diǎn)的軌跡為曲線C1
(1)求C1的極坐標(biāo)方程;
(2)已知曲線l的參數(shù)方程為$\left\{\begin{array}{l}{x=tcosα}\\{y=tsinα}\end{array}\right.$,(0≤α<π,t為參數(shù),且t≠0),l與C交于點(diǎn)A,l與C1交于點(diǎn)B,且|$\overrightarrow{AB}$|=$\sqrt{3}$,求α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.在圓內(nèi)接四邊形ABCD中,AD為圓的直徑,對(duì)角線AC與BD交于點(diǎn)Q,AB,DC的延長(zhǎng)線交于點(diǎn)P,連接PQ并延長(zhǎng)交AD于點(diǎn)E,連接EB.
(1)求證:PE⊥AD;
(2)求證:BD平分∠EBC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.在極坐標(biāo)系中,點(diǎn)A的極坐標(biāo)是(1,π),點(diǎn)P是曲線C:ρ=2sinθ上的一個(gè)動(dòng)點(diǎn),則|PA|的取值范圍是$[\sqrt{2}-1,\sqrt{2}+1]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.函數(shù)f(x)=(x2-ax+2a)ln(x+1)的圖象經(jīng)過(guò)四個(gè)象限,則實(shí)數(shù)a的取值范圍為(-$\frac{1}{3}$,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=alnx+$\frac{1}{2}$x2-$\frac{1}{2}$(a∈R)
(Ⅰ)若a=-4,求f(x)的單調(diào)區(qū)間;
(Ⅱ)若f(x)≥0在區(qū)間[1,+∞)上恒成立,求a的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案