2.在空間直角坐標(biāo)系中,點(diǎn)M(-2,4,-3)在xOz平面上的射影為M′點(diǎn),則M′點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)的坐標(biāo)是(2,0,3).

分析 由在空間直角坐標(biāo)系中,點(diǎn)M(-2,4,-3)在xOz平面上的射影為M′點(diǎn),先求出M′的坐標(biāo),由此能求出M′點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)的坐標(biāo).

解答 解:∵在空間直角坐標(biāo)系中,點(diǎn)M(-2,4,-3)在xOz平面上的射影為M′點(diǎn),
∴M′(-2,0,-3),
∴M′點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)的坐標(biāo)是(2,0,3).
故答案為:(2,0,3).

點(diǎn)評(píng) 本題考查點(diǎn)的坐標(biāo)的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意射影、對(duì)稱等知識(shí)點(diǎn)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的焦距為2,且過點(diǎn)(1,$\frac{3}{2}}$),其長軸的左右兩個(gè)端點(diǎn)分別為A,B,直線y=$\frac{3}{2}$x+m交橢圓于兩點(diǎn)C,D.
(1)求橢圓標(biāo)準(zhǔn)的方程;
(2)設(shè)直線AD,CB的斜率分別為k1,k2,若k1:k2=2:1,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列各組函數(shù)中,表示同一函數(shù)的是(  )
A.y=x-1和y=$\root{3}{{(x-1)}^{3}}$B.y=$\frac{{x}^{4}-1}{{x}^{2}-1}$和y=x2+1
C.y=${3}^{{log}_{3}x}$和y=$\sqrt{{x}^{2}}$D.y=$\sqrt{{x}^{2}}$和y=x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.下列函數(shù)中,既是偶函數(shù)又在區(qū)間(0,+∞)上單調(diào)遞增的是( 。
A.y=$\frac{1}{x^2}$B.y=x2+1C.y=x3D.y=2-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.直線l經(jīng)過原點(diǎn)和(1,-1),則它的傾斜角是( 。
A.45°B.-45°C.135°D.45°或135°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.函數(shù)f(x)=2x-4x的兩個(gè)零點(diǎn)分別記為x1和x2,若x1<x2,則x1屬于( 。
A.(0,1)B.(1,2)C.(2,4)D.(3,5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知圓的方程為x2+y2+4x-2y+3=0,則圓心坐標(biāo)與半徑分別為( 。
A.圓心坐標(biāo)(2,1),半徑為2B.圓心坐標(biāo)(-2,1),半徑為2
C.圓心坐標(biāo)(-2,1),半徑為1D.圓心坐標(biāo)(-2,1),半徑為$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.函數(shù)y=e2x的n階導(dǎo)數(shù)為2ne2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知f(x)=$\frac{cos(π+α)cos(\frac{π}{2}+α)}{sin(π-α)}$.
(1)化簡(jiǎn)f(α);
(2)若α為第三象限角且tan(π+α)=$\frac{1}{2}$,求f(α)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案